HSC Niche Biology and HSC Expansion Ex Vivo

离体 生物 利基 体内 细胞生物学 进化生物学 遗传学 生态学
作者
Sachin Kumar,Hartmut Geiger
出处
期刊:Trends in Molecular Medicine [Elsevier BV]
卷期号:23 (9): 799-819 被引量:137
标识
DOI:10.1016/j.molmed.2017.07.003
摘要

HSC niches have been defined in more detail with respect to their cellular composition over the past few years. Molecular characterization of these niches has been successfully initiated. Molecular pathways that govern the mode of division of HSCs are being discovered. HSC intrinsic mechanisms, such as metabolic pathways regulating HSC self-renewal, can be modulated by the environment and/or niche factors. High-throughput screening of chemical compound libraries has resulted in a few successful attempts towards HSC expansion ex vivo. Attempts to engineer stem cell niches ex vivo in 3D matrix culture systems are promising. Hematopoietic stem cell (HSC) transplantation can restore a new functional hematopoietic system in recipients in cases where the system of the recipient is not functional or for example is leukemic. However, the number of available donor HSCs is often too low for successful transplantation. Expansion of HSCs and thus HSC self-renewal ex vivo would greatly improve transplantation therapy in the clinic. In vivo, HSCs expand significantly in the niche, but establishing protocols that result in HSC expansion ex vivo remains challenging. In this review we discuss current knowledge of niche biology, the intrinsic regulators of HSC self-renewal in vivo, and introduce novel niche-informed strategies of HSC expansion ex vivo. Hematopoietic stem cell (HSC) transplantation can restore a new functional hematopoietic system in recipients in cases where the system of the recipient is not functional or for example is leukemic. However, the number of available donor HSCs is often too low for successful transplantation. Expansion of HSCs and thus HSC self-renewal ex vivo would greatly improve transplantation therapy in the clinic. In vivo, HSCs expand significantly in the niche, but establishing protocols that result in HSC expansion ex vivo remains challenging. In this review we discuss current knowledge of niche biology, the intrinsic regulators of HSC self-renewal in vivo, and introduce novel niche-informed strategies of HSC expansion ex vivo. stem cells from an HLA-matched donor are transplanted. leads to the generation of two cells with different potential: a daughter stem cell and a daughter progenitor cell. ATM regulates reprogramming efficiency and genomic stability; Atm−/− mice exhibit pancytopenia, bone marrow (BM) failure, and hematopoietic stem cell (HSC) exhaustion. an individual’s own stem cells are collected in advance and transplanted to herself/himself after chemotherapy or radiation therapy. process that degrades/destructs dysfunctional components of the cytoplasm (autophagy) or dysfunctional mitochondria (mitophagy) in lysosomes. human cells expressing CD34; include both stem and progenitor cell populations. a property of cells that is governed/regulated by signaling/factors within, but not through, the niche environment. transplantation of donor HSCs or BM cells in the presence of genetically trackable congenic competitor BM cells. the generation of progenitor cells from stem cells; necessary to produce mature blood cells. HSC niche in close association to a bone surface. includes among other elements collagen, fibronectin, dystroglycan, heparin sulfate, proteoglycans, osteopontin, and laminins. a subset of endothelial cells with the potential to differentiate into hematopoietic cells. the process of blood cell formation from HSCs. a state of turnover in which the cells are ‘used up’; HSCs can undergo exhaustion due to the high demand of reconstitution in stress or serial transplant settings. the process of increasing the number of HSCs. a specific BM environment that provides cellular, chemical, and molecular constituents and contributes to the regulation of HSC survival, self-renewal, and differentiation. a procedure to replenish the blood system of a recipient by providing a sufficient number of new HSCs cells from a donor. encodes the major histocompatibility complex (MHC) proteins in humans and functions as a determinant of transplant rejection. intravenously injected HSCs from a donor into a recipient to reconstitute the hematopoietic system. a distinct fraction of murine hematopoietic stem and progenitor cells in the BM; these are characterized as Lin−Sca-1+c-Kit+ based on surface marker expression. give rise to multilineage engraftment post-transplantation for a timeframe of at least 20 weeks. LT-HSCs are phenotypically characterized as Lin−IL-7α−Sca-1+c-Kit+Flt3−CD34−CD150+CD48− cells. primitive hematopoietic cells capable of initiating and sustaining in vitro cultures for >5 weeks, including colony-forming cells (CFCs) or cobblestone area forming cells. controls nutrient sensing, metabolism, and mitogenic signals to regulate cell quiescence, proliferation, cell survival, and longevity; important for PI3K, Akt, and insulin signal-transduction pathways. see autophagy. nonobese diabetic (NOD)-severe combined immunodeficiency (SCID) mice display impaired T and B cell lymphocytes and deficient natural killer (NK) cell function. They can accept allogeneic and xenogeneic grafts, and are thus an excellent model system to study human cell transplantation and engraftment (xenotransplants). reduction in the number of all three blood cell types: red blood cells, white blood cells, and platelets. a nontoxic exogenous 2-nitroimidazole low molecular weight compound that forms adducts with thiol groups in hypoxic environments and works as an effective and nontoxic hypoxia marker. the state of being inactive or dormant in the cell division cycle. the capacity to confer long-term survival after lethal irradiation (e.g., mice). regarded as the gold standard assay to determine HSC function in vivo. Serial (multiple, consecutive, up to 6) transplantations (e.g., in mice) test the ability of HSCs to undergo self-renewal in vivo. human HSCs capable of long-term reconstitution in immunodeficient mice (xenotransplant approach). cell division producing two daughter stem cells. small blood vessel capillaries of irregular tubular space for blood passage within the BM. HSCs can reside near the sinusoid networks that present a sinusoidal niche. leads to the generation of two similar types of daughter cells: either two stem or two progenitor cells. well-established assay to measure multilineage reconstitution and self-renewal potential of hematopoietic stem and progenitor cells in irradiated recipient mice in vivo. a transplantation setting in which the donor of a tissue graft or organ transplant is of a species different from that of the recipient, for example human stem cell transplantation into mice. Generally, immunodeficient mice, in other words SCID, NOD/SCID, or NOD/SCID/Ycnull (NSG) mice, are used as recipients in human–mouse xenograft models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在封我就急眼啦完成签到,获得积分10
刚刚
彭于晏应助NXK采纳,获得10
1秒前
可靠的中心完成签到,获得积分20
2秒前
2秒前
难过的一凤完成签到,获得积分10
4秒前
qiao应助Nan采纳,获得10
6秒前
ff完成签到,获得积分10
8秒前
暮晓见发布了新的文献求助10
8秒前
8秒前
NXK发布了新的文献求助10
13秒前
尽平梅愿完成签到 ,获得积分10
14秒前
酷波er应助淡定归尘采纳,获得30
16秒前
sure完成签到,获得积分10
16秒前
liuqiuchina完成签到,获得积分10
17秒前
UPUP0707完成签到,获得积分10
17秒前
研友_VZG7GZ应助小四喜采纳,获得10
19秒前
大知闲闲给大知闲闲的求助进行了留言
20秒前
21秒前
科研通AI5应助橘子海采纳,获得10
21秒前
23秒前
25秒前
打打应助新陈采纳,获得10
26秒前
nimabide发布了新的文献求助10
29秒前
32秒前
SciGPT应助清秀的寄柔采纳,获得10
35秒前
新陈发布了新的文献求助10
37秒前
熬夜猝死的我完成签到 ,获得积分10
39秒前
40秒前
dkyt完成签到,获得积分10
40秒前
wx0816完成签到,获得积分10
43秒前
46秒前
Likun发布了新的文献求助10
47秒前
47秒前
Alex发布了新的文献求助10
51秒前
51秒前
爆米花应助任性的天空采纳,获得10
53秒前
54秒前
一粟的粉r完成签到 ,获得积分10
55秒前
寒冷的友绿给寒冷的友绿的求助进行了留言
56秒前
56秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781287
求助须知:如何正确求助?哪些是违规求助? 3326814
关于积分的说明 10228352
捐赠科研通 3041803
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751