DeepDTA: deep drug–target binding affinity prediction

结合亲和力 计算机科学 水准点(测量) 药物发现 二元分类 卷积神经网络 亲缘关系 人工智能 药物靶点 鉴定(生物学) 机器学习 计算生物学 深度学习 化学 生物信息学 支持向量机 生物 立体化学 受体 地理 植物 生物化学 大地测量学
作者
Hakime Öztürk,Arzucan Özgür,Elif Özkırımlı
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:34 (17): i821-i829 被引量:1069
标识
DOI:10.1093/bioinformatics/bty593
摘要

The identification of novel drug-target (DT) interactions is a substantial part of the drug discovery process. Most of the computational methods that have been proposed to predict DT interactions have focused on binary classification, where the goal is to determine whether a DT pair interacts or not. However, protein-ligand interactions assume a continuum of binding strength values, also called binding affinity and predicting this value still remains a challenge. The increase in the affinity data available in DT knowledge-bases allows the use of advanced learning techniques such as deep learning architectures in the prediction of binding affinities. In this study, we propose a deep-learning based model that uses only sequence information of both targets and drugs to predict DT interaction binding affinities. The few studies that focus on DT binding affinity prediction use either 3D structures of protein-ligand complexes or 2D features of compounds. One novel approach used in this work is the modeling of protein sequences and compound 1D representations with convolutional neural networks (CNNs). The results show that the proposed deep learning based model that uses the 1D representations of targets and drugs is an effective approach for drug target binding affinity prediction. The model in which high-level representations of a drug and a target are constructed via CNNs achieved the best Concordance Index (CI) performance in one of our larger benchmark data sets, outperforming the KronRLS algorithm and SimBoost, a state-of-the-art method for DT binding affinity prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助www采纳,获得10
1秒前
yydsyk完成签到,获得积分10
3秒前
Taylor完成签到,获得积分20
3秒前
3秒前
啊啊完成签到,获得积分10
3秒前
Smole完成签到,获得积分10
4秒前
4秒前
momo完成签到,获得积分10
4秒前
4秒前
酷波er应助12366666采纳,获得10
5秒前
王SQ完成签到 ,获得积分10
5秒前
feng完成签到 ,获得积分10
5秒前
moroa完成签到,获得积分10
6秒前
7秒前
流露完成签到,获得积分10
8秒前
Monica发布了新的文献求助10
8秒前
yang完成签到,获得积分10
8秒前
champtin完成签到 ,获得积分20
8秒前
纯真冰露完成签到,获得积分10
9秒前
SYLH应助成就小懒虫采纳,获得10
9秒前
10秒前
Yyy发布了新的文献求助10
10秒前
WANGs发布了新的文献求助10
11秒前
Chamsel完成签到,获得积分10
11秒前
Arml完成签到 ,获得积分10
11秒前
11秒前
Fa完成签到,获得积分10
11秒前
繁荣的忆文完成签到,获得积分10
11秒前
科研通AI5应助殇春秋采纳,获得10
11秒前
步行街车神ahua完成签到,获得积分10
12秒前
Sene完成签到,获得积分10
13秒前
13秒前
wanci应助Cynthia采纳,获得10
13秒前
guozizi完成签到,获得积分10
13秒前
吴学仕完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
科目三应助烨霖采纳,获得10
15秒前
豚豚完成签到,获得积分10
15秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816166
求助须知:如何正确求助?哪些是违规求助? 3359723
关于积分的说明 10404224
捐赠科研通 3077544
什么是DOI,文献DOI怎么找? 1690330
邀请新用户注册赠送积分活动 813741
科研通“疑难数据库(出版商)”最低求助积分说明 767787