Quantitative Design of Regulatory Elements Based on High-Precision Strength Prediction Using Artificial Neural Network

生物信息学 人工神经网络 计算生物学 一致性(知识库) 合成生物学 计算机科学 生物系统 生物 人工智能 机器学习
作者
Hailin Meng,Jianfeng Wang,Xiong Zhiqiang,Feng Xu,Guoping Zhao,Yong Wang
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:8 (4) 被引量:34
标识
DOI:10.1371/journal.pone.0060288
摘要

Accurate and controllable regulatory elements such as promoters and ribosome binding sites (RBSs) are indispensable tools to quantitatively regulate gene expression for rational pathway engineering. Therefore, de novo designing regulatory elements is brought back to the forefront of synthetic biology research. Here we developed a quantitative design method for regulatory elements based on strength prediction using artificial neural network (ANN). One hundred mutated Trc promoter & RBS sequences, which were finely characterized with a strength distribution from 0 to 3.559 (relative to the strength of the original sequence which was defined as 1), were used for model training and test. A precise strength prediction model, NET90_19_576, was finally constructed with high regression correlation coefficients of 0.98 for both model training and test. Sixteen artificial elements were in silico designed using this model. All of them were proved to have good consistency between the measured strength and our desired strength. The functional reliability of the designed elements was validated in two different genetic contexts. The designed parts were successfully utilized to improve the expression of BmK1 peptide toxin and fine-tune deoxy-xylulose phosphate pathway in Escherichia coli. Our results demonstrate that the methodology based on ANN model can de novo and quantitatively design regulatory elements with desired strengths, which are of great importance for synthetic biology applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寄语明月完成签到,获得积分10
1秒前
LZR发布了新的文献求助10
2秒前
杨师傅完成签到 ,获得积分10
7秒前
微雨若,,完成签到 ,获得积分10
9秒前
李大白完成签到 ,获得积分10
11秒前
ymxlcfc完成签到 ,获得积分10
15秒前
ZH完成签到 ,获得积分10
15秒前
Heidi完成签到 ,获得积分10
18秒前
轩辕剑身完成签到,获得积分0
19秒前
haochi完成签到,获得积分10
21秒前
鳌小饭完成签到 ,获得积分10
28秒前
32秒前
江幻天完成签到,获得积分10
32秒前
tszjw168完成签到 ,获得积分10
33秒前
怀风发布了新的文献求助10
37秒前
欧欧欧导完成签到,获得积分10
39秒前
领导范儿应助科研通管家采纳,获得10
39秒前
39秒前
cdercder应助科研通管家采纳,获得10
39秒前
鳌小饭发布了新的文献求助10
40秒前
Xenia完成签到 ,获得积分10
41秒前
迷人面包完成签到,获得积分10
41秒前
早睡完成签到 ,获得积分10
45秒前
斯文的慕儿完成签到 ,获得积分10
47秒前
小伊001完成签到,获得积分10
49秒前
hyl-tcm完成签到 ,获得积分10
51秒前
FL完成签到,获得积分10
52秒前
舒适的天奇完成签到 ,获得积分10
55秒前
洸彦完成签到 ,获得积分10
55秒前
点点完成签到 ,获得积分10
1分钟前
韩医生口腔完成签到 ,获得积分10
1分钟前
1分钟前
踢球的孩子完成签到 ,获得积分10
1分钟前
风生发布了新的文献求助10
1分钟前
song完成签到 ,获得积分10
1分钟前
飞云发布了新的文献求助10
1分钟前
七月星河完成签到 ,获得积分10
1分钟前
有魅力天抒完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI5应助LZR采纳,获得10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815909
求助须知:如何正确求助?哪些是违规求助? 3359386
关于积分的说明 10402450
捐赠科研通 3077226
什么是DOI,文献DOI怎么找? 1690236
邀请新用户注册赠送积分活动 813667
科研通“疑难数据库(出版商)”最低求助积分说明 767743