模型预测控制
稳健性(进化)
计算机科学
图形处理单元
计算
采样(信号处理)
数学优化
路径积分公式
非线性系统
微分动态规划
绘图
最优控制
动态规划
算法
控制理论(社会学)
控制(管理)
数学
人工智能
并行计算
基因
滤波器(信号处理)
物理
计算机图形学(图像)
生物化学
量子力学
计算机视觉
化学
量子
作者
Grady Williams,Andrew Aldrich,Evangelos A. Theodorou
出处
期刊:Journal of Guidance Control and Dynamics
[American Institute of Aeronautics and Astronautics]
日期:2017-01-31
卷期号:40 (2): 344-357
被引量:213
摘要
In this paper, a model predictive path integral control algorithm based on a generalized importance sampling scheme is developed and parallel optimization via sampling is performed using a graphics processing unit. The proposed generalized importance sampling scheme allows for changes in the drift and diffusion terms of stochastic diffusion processes and plays a significant role in the performance of the model predictive control algorithm. The proposed algorithm is compared in simulation with a model predictive control version of differential dynamic programming on nonlinear systems. Finally, the proposed algorithm is applied on multiple vehicles for the task of navigating through a cluttered environment. The current simulations illustrate the efficiency and robustness of the proposed approach and demonstrate the advantages of computational frameworks that incorporate concepts from statistical physics, control theory, and parallelization against more traditional approaches of optimal control theory.
科研通智能强力驱动
Strongly Powered by AbleSci AI