Protecting DNA from errors and damage: an overview of DNA repair mechanisms in plants compared to mammals

生物 DNA修复 突变 DNA损伤 基因 基因组 遗传学 DNA 拟南芥 DNA复制 计算生物学 突变 突变体
作者
Claudia P. Spampinato
出处
期刊:Cellular and Molecular Life Sciences [Springer Nature]
卷期号:74 (9): 1693-1709 被引量:64
标识
DOI:10.1007/s00018-016-2436-2
摘要

The genome integrity of all organisms is constantly threatened by replication errors and DNA damage arising from endogenous and exogenous sources. Such base pair anomalies must be accurately repaired to prevent mutagenesis and/or lethality. Thus, it is not surprising that cells have evolved multiple and partially overlapping DNA repair pathways to correct specific types of DNA errors and lesions. Great progress in unraveling these repair mechanisms at the molecular level has been made by several talented researchers, among them Tomas Lindahl, Aziz Sancar, and Paul Modrich, all three Nobel laureates in Chemistry for 2015. Much of this knowledge comes from studies performed in bacteria, yeast, and mammals and has impacted research in plant systems. Two plant features should be mentioned. Plants differ from higher eukaryotes in that they lack a reserve germline and cannot avoid environmental stresses. Therefore, plants have evolved different strategies to sustain genome fidelity through generations and continuous exposure to genotoxic stresses. These strategies include the presence of unique or multiple paralogous genes with partially overlapping DNA repair activities. Yet, in spite (or because) of these differences, plants, especially Arabidopsis thaliana, can be used as a model organism for functional studies. Some advantages of this model system are worth mentioning: short life cycle, availability of both homozygous and heterozygous lines for many genes, plant transformation techniques, tissue culture methods and reporter systems for gene expression and function studies. Here, I provide a current understanding of DNA repair genes in plants, with a special focus on A. thaliana. It is expected that this review will be a valuable resource for future functional studies in the DNA repair field, both in plants and animals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清醒完成签到,获得积分10
1秒前
1秒前
2秒前
小郭子完成签到,获得积分10
2秒前
fdffff完成签到,获得积分20
2秒前
复杂曼梅发布了新的文献求助10
2秒前
海聪天宇完成签到,获得积分10
3秒前
3秒前
mtw完成签到,获得积分20
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
shinysparrow应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
一二发布了新的文献求助10
4秒前
Owen应助科研通管家采纳,获得30
4秒前
Akim应助科研通管家采纳,获得10
4秒前
fdffff发布了新的文献求助10
4秒前
羽化成仙发布了新的文献求助10
5秒前
5秒前
小马甲应助adore12采纳,获得10
5秒前
洁净尔风完成签到,获得积分10
5秒前
6秒前
7秒前
江涛应助shawn采纳,获得10
7秒前
miaomiao_ma完成签到,获得积分10
8秒前
8秒前
英俊的铭应助科研捣蛋鬼采纳,获得10
9秒前
9秒前
ccczzzyyy完成签到,获得积分10
9秒前
可爱鸡翅完成签到,获得积分10
9秒前
小石头发布了新的文献求助10
10秒前
流光完成签到,获得积分10
12秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Teaching Social and Emotional Learning in Physical Education 900
Edestus (Chondrichthyes, Elasmobranchii) from the Upper Carboniferous of Xinjiang, China 500
Chinese-English Translation Lexicon Version 3.0 500
Electronic Structure Calculations and Structure-Property Relationships on Aromatic Nitro Compounds 500
マンネンタケ科植物由来メロテルペノイド類の網羅的全合成/Collective Synthesis of Meroterpenoids Derived from Ganoderma Family 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 440
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2381320
求助须知:如何正确求助?哪些是违规求助? 2088574
关于积分的说明 5246059
捐赠科研通 1815500
什么是DOI,文献DOI怎么找? 905837
版权声明 558834
科研通“疑难数据库(出版商)”最低求助积分说明 483710