SU-FF-I-40: Proton Computed Tomography Reconstruction Using Compressed Sensing and Prior Image Constrained Compressed Sensing

成像体模 压缩传感 迭代重建 质子疗法 蒙特卡罗方法 像素 计算机科学 人工智能 数据集 计算机视觉 核医学 物理 光学 数学 医学 梁(结构) 统计
作者
DX Wang,Thomas R. Mackie,Wolfgang A. Tomé
出处
期刊:Medical Physics [Wiley]
被引量:2
标识
DOI:10.1118/1.3181159
摘要

Purpose: To study the feasibility of protoncomputed tomography(CT)reconstruction using compressed sensing (CS) and prior image constrained compressed sensing (PICCS). ProtonCTimages can be used for pre‐therapy planning, image guidance and registration verification. Method and Materials: Projections of 200 MeV proton beams onto an ellipsoid phantom was simulated using Geant4 Monte Carlo simulation toolkit. The position and energy of the entrance and exit protons were recorded. Straight‐line path (SLP) estimation was used to represent proton paths, and simultaneous algebraic reconstruction technique (SART) with CS was used to reconstruct a protonstopping powerimage for a 2‐mm thick slice of the phantom. PICCS was used to reconstruct the image from highly undersampled data with an accurate and well‐registered prior image. A Gradient transform was used to yield a sparse data set for CS and PICCS. Results: SART with CS reconstructed a 320×320 protonstopping powerimage of the central slice of the phantom after 10 iterations. A proton/pixel ratio of 0.2 is sufficient to reconstruct an image of correct geometry. The average protonstopping power of the reconstructed materials cortical bone, water, and air were found to agree with the expected values from ICRU Report 49 within 8.3%, 0.6%, and 3.8% respectively. Employing a prior image and PICCS in the reconstruction, a proton/pixel ratio as low as 0.05 was found to be sufficient, and the reconstruction time of less than 2 minutes was achieved using a serial algorithm. Reconstruction artifacts in the images were minimal. Conclusion: With CS, or with PICCS plus a prior image, SART can reconstruct a protonCTimage of good quality within minutes. This paves the road to a clinically feasible approach toward low‐dose pre‐proton therapy treatment planning and image guidance using a fast‐reconstructed protonCTimage with a well‐registered kV‐CT prior image.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪途完成签到,获得积分10
1秒前
2秒前
木马上市发布了新的文献求助20
3秒前
邮寄短诗完成签到,获得积分20
4秒前
zikncy完成签到,获得积分10
5秒前
猫小乐C发布了新的文献求助20
5秒前
珊珊完成签到,获得积分10
6秒前
怡崽完成签到,获得积分10
6秒前
大乐发布了新的文献求助10
7秒前
柒染完成签到,获得积分10
7秒前
7秒前
珊珊发布了新的文献求助10
8秒前
之组长了完成签到 ,获得积分10
9秒前
共享精神应助zikncy采纳,获得10
9秒前
9秒前
一叶扁舟发布了新的文献求助10
10秒前
高贵路灯完成签到 ,获得积分10
10秒前
乐乐应助大喜采纳,获得50
11秒前
李健的粉丝团团长应助小t采纳,获得10
12秒前
liuliumei完成签到,获得积分10
13秒前
星辰大海应助青藤采纳,获得10
15秒前
Pomelo发布了新的文献求助10
15秒前
江鸿惊发布了新的文献求助10
15秒前
16秒前
16秒前
张张发布了新的文献求助10
18秒前
在水一方应助XX采纳,获得10
18秒前
xiaoxiao完成签到,获得积分10
18秒前
执着的草丛完成签到,获得积分10
20秒前
17关注了科研通微信公众号
21秒前
无花果应助大乐采纳,获得10
21秒前
冰雪完成签到 ,获得积分20
21秒前
Ava应助chen采纳,获得10
21秒前
22秒前
wanci应助Raojas采纳,获得10
22秒前
小米粥完成签到,获得积分10
22秒前
www完成签到 ,获得积分10
22秒前
IRer79发布了新的文献求助10
22秒前
洛洛完成签到,获得积分10
22秒前
我是老大应助珊珊采纳,获得10
23秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813863
求助须知:如何正确求助?哪些是违规求助? 3358242
关于积分的说明 10393295
捐赠科研通 3075577
什么是DOI,文献DOI怎么找? 1689423
邀请新用户注册赠送积分活动 812845
科研通“疑难数据库(出版商)”最低求助积分说明 767387