Automated Fault Diagnosis of a Micro Turbine With Comparison to a Neural Network Technique

断层(地质) 黑匣子 计算机科学 人工神经网络 过程(计算) 操作点 涡轮机 实时计算 可靠性工程 瞬态(计算机编程) 电力系统 功率(物理) 汽车工程 工程类 人工智能 电气工程 机械工程 物理 量子力学 地震学 地质学 操作系统
作者
Craig R. Davison,A. M. Birk
出处
期刊:Volume 2: Aircraft Engine; Ceramics; Coal, Biomass and Alternative Fuels; Controls, Diagnostics and Instrumentation; Environmental and Regulatory Affairs 被引量:5
标识
DOI:10.1115/gt2006-91085
摘要

In the predicted future of distributed power generation, a large number of users will operate gas turbine powered cogeneration systems. These systems will be small, relatively inexpensive, and installed in locations without ready access to experts in gas turbine maintenance. Consequently, an automated system to monitor the engine and diagnose the health of the system is required. To remain compatible with the low cost of the overall system, the diagnostic system must also be relatively inexpensive to install and operate. Therefore, a minimum number of extra sensors and computing power should be used. A statistical technique is presented that compares the engine operation over time to the expected trends for particular faults. The technique ranks the probability that each fault is occurring on the engine. The technique can be used online, with daily data from the engine forming a trend for comparison, or, with less accuracy, based on a single operating point. The use of transient operating data with this technique is also examined. This technique has the advantage of providing an automated numerical result of the probability of a particular mode of degradation occurring, but can also produce visual plots of the engine operation. This allows maintenance staff to remain involved in the process, if they wish, rather than the system operating purely as a black box, and provides an easy to understand aid for discussions with operators. The technique is compared to an off the shelf neural network to determine its usefulness in comparison to other diagnostic methods. The test bed was a micro turbojet engine. The data to test the system was obtained from both experiment and computer modeling of the test engine.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cslghe应助liuzhanyu采纳,获得10
1秒前
xjbnn关注了科研通微信公众号
1秒前
Mike完成签到,获得积分10
2秒前
qi完成签到,获得积分20
2秒前
2秒前
古猫宁发布了新的文献求助10
3秒前
3秒前
5秒前
wszhang发布了新的文献求助10
5秒前
思源应助hui采纳,获得10
5秒前
6秒前
6秒前
Lucas应助墨菲采纳,获得10
7秒前
顺利的歌曲完成签到,获得积分10
7秒前
bioai完成签到,获得积分10
7秒前
liuzhanyu完成签到,获得积分10
9秒前
tt完成签到,获得积分10
9秒前
ShengQ完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
wzh发布了新的文献求助10
11秒前
快乐的海亦完成签到,获得积分10
11秒前
情怀应助wszhang采纳,获得10
12秒前
田博文发布了新的文献求助10
12秒前
科目三应助JustinaLiu采纳,获得10
12秒前
小鹿斑比完成签到 ,获得积分10
13秒前
星star发布了新的文献求助10
13秒前
14秒前
14秒前
樱桃小浣完成签到 ,获得积分10
15秒前
搜集达人应助李茉采纳,获得10
15秒前
冷月完成签到,获得积分10
16秒前
凌儿响叮当完成签到 ,获得积分10
16秒前
17秒前
zyx发布了新的文献求助15
18秒前
19秒前
小雨点Logan完成签到,获得积分10
19秒前
巫马小霜发布了新的文献求助100
19秒前
CodeCraft应助奋斗八宝粥采纳,获得10
19秒前
东方天奇完成签到 ,获得积分10
20秒前
牛牛超人完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524954
求助须知:如何正确求助?哪些是违规求助? 4615330
关于积分的说明 14547728
捐赠科研通 4553400
什么是DOI,文献DOI怎么找? 2495243
邀请新用户注册赠送积分活动 1475876
关于科研通互助平台的介绍 1447617