恶劣天气
吞吐量
空中交通管理
极端天气
计算机科学
运输工程
空中交通管制
环境科学
气象学
工程类
地理
电信
气候变化
航空航天工程
生物
无线
生态学
作者
Álvaro Rodríguez–Sanz,Javier Cano,Beatriz Rubio Fernández
标识
DOI:10.1108/aeat-12-2020-0318
摘要
Purpose Weather events have a significant impact on airport arrival performance and may cause delays in operations and/or constraints in airport capacity. In Europe, almost half of all regulated airport traffic delay is due to adverse weather conditions. Moreover, the closer airports operate to their maximum capacity, the more severe is the impact of a capacity loss due to external events such as weather. Various weather uncertainties occurring during airport operations can significantly delay some arrival processes and cause network-wide effects on the overall air traffic management (ATM) system. Quantifying the impact of weather is, therefore, a key feature to improve the decision-making process that enhances airport performance. It would allow airport operators to identify the relevant weather information needed, and help them decide on the appropriate actions to mitigate the consequences of adverse weather events. Therefore, this research aims to understand and quantify the impact of weather conditions on airport arrival processes, so it can be properly predicted and managed. Design/methodology/approach This study presents a methodology to evaluate the impact of adverse weather events on airport arrival performance (delay and throughput) and to define operational thresholds for significant weather conditions. This study uses a Bayesian Network approach to relate weather data from meteorological reports and airport arrival performance data with scheduled and actual movements, as well as arrival delays. This allows us to understand the relationships between weather phenomena and their impacts on arrival delay and throughput. The proposed model also provides us with the values of the explanatory variables (weather events) that lead to certain operational thresholds in the target variables (arrival delay and throughput). This study then presents a quantification of the airport performance with regard to an aggregated weather-performance metric. Specific weather phenomena are categorized through a synthetic index, which aims to quantify weather conditions at a given airport, based on aviation routine meteorological reports. This helps us to manage uncertainty at airport arrival operations by relating index levels with airport performance results. Findings The results are computed from a data set of over 750,000 flights on a major European hub and from local weather data during the period 2015–2018. This study combines delay and capacity metrics at different airport operational stages for the arrival process (final approach, taxi-in and in-block). Therefore, the spatial boundary of this study is not only the airport but also its surrounding airspace, to take both the arrival sequencing and metering area and potential holding patterns into consideration. Originality/value This study introduces a new approach for modeling causal relationships between airport arrival performance indicators and meteorological events, which can be used to quantify the impact of weather in airport arrival conditions, predict the evolution of airport operational scenarios and support airport decision-making processes.
科研通智能强力驱动
Strongly Powered by AbleSci AI