Quadratic polynomial guided fuzzy C-means and dual attention mechanism for medical image segmentation

分割 计算机科学 图像分割 模糊逻辑 人工智能 多项式的 尺度空间分割 噪音(视频) 模式识别(心理学) 算法 数学 图像(数学) 数学分析
作者
Weiwei Cai,Bo Zhai,Yun Liu,Runmin Liu,Xin Ning
出处
期刊:Displays [Elsevier BV]
卷期号:70: 102106-102106 被引量:87
标识
DOI:10.1016/j.displa.2021.102106
摘要

• This paper proposes a novel quadratic polynomial guided fuzzy C-means and dual attention mechanism composite network that can better distinguish the weak edge region in an image, has a certain level of noise resistance, can obtain a membership matrix with less fuzziness, and can obtain more secure segmentation results. • Taking into account that the current model with a constant as the division center is a special case of a quadratic polynomial surface as the division center. Therefore, this paper proposes dividing the data point set by the algebraic distance from the data point to the segmentation center, which has higher segmentation accuracy. • This paper designs a novel spatial edge attention module, which is mainly used to extract the edge information of the feature map to prevent the loss of important information and improve the edge segmentation ability of the model. • This paper conducted experiments on three well-known medical datasets. The comparison and ablation experiment results proved the effectiveness and superiority of the QPFC-DA algorithm. In addition, we also developed an Android APP that can be used in industrial production environments. Medical image segmentation is the most complex and important task in the field of medical image processing and analysis, as it is linked to disease diagnosis accuracy. However, due to the medical image's high complexity and noise, segmentation performance is limited. We propose a novel quadratic polynomial guided fuzzy C-means and dual attention mechanism composite network model architecture to address the aforementioned issues (QPFC-DA). It has mechanisms for channel and spatial edge attention, which guide the content and edge segmentation branches, respectively. The bi-directional long short-term memory network was added after the two content segmentation branches to better integrate multi-scale features and prevent the loss of important features. Furthermore, the fuzzy C-means algorithm guided by the quadratic polynomial can better distinguish the image's weak edge regions and has a degree of noise resistance, resulting in a membership matrix with less ambiguity and a more reliable segmentation result. We also conducted comparison and ablation experiments on three medical data sets. The experimental results show that this method is superior to several other well-known methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和尘同光完成签到,获得积分10
2秒前
小章鱼发布了新的文献求助10
3秒前
wtbxsjy发布了新的文献求助30
3秒前
3秒前
Sci完成签到,获得积分10
3秒前
香蕉觅云应助朱灭龙采纳,获得10
3秒前
科目三应助紫薯球采纳,获得10
4秒前
大神水瓶座完成签到,获得积分10
5秒前
CY发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
賢様666完成签到,获得积分10
9秒前
cookie486发布了新的文献求助10
13秒前
suodeheng完成签到,获得积分10
14秒前
淡然寒蕾完成签到,获得积分10
15秒前
18秒前
腾腾完成签到 ,获得积分10
19秒前
老虎皮完成签到,获得积分10
19秒前
19秒前
wtbxsjy完成签到,获得积分10
20秒前
20秒前
朱灭龙发布了新的文献求助10
22秒前
坦率的尔丝完成签到,获得积分10
23秒前
老实易蓉应助迅速海云采纳,获得10
25秒前
25秒前
K3完成签到,获得积分10
25秒前
26秒前
简柠完成签到,获得积分10
28秒前
MM完成签到,获得积分10
29秒前
cyanpomelo应助万物更始采纳,获得10
29秒前
30秒前
kkdkg发布了新的文献求助10
30秒前
明亮无颜发布了新的文献求助200
33秒前
于是完成签到,获得积分10
33秒前
Joaquin完成签到 ,获得积分10
35秒前
灰灰喵完成签到 ,获得积分10
37秒前
阿斯顿撒大学完成签到,获得积分10
37秒前
wh应助田俊采纳,获得10
38秒前
龍fei完成签到,获得积分10
38秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801134
求助须知:如何正确求助?哪些是违规求助? 3346777
关于积分的说明 10330258
捐赠科研通 3063151
什么是DOI,文献DOI怎么找? 1681383
邀请新用户注册赠送积分活动 807540
科研通“疑难数据库(出版商)”最低求助积分说明 763728