阳极
离子
电压降
电化学
下降(电信)
开尔文探针力显微镜
分析化学(期刊)
电极
介电谱
材料科学
电极电位
化学
限制
阴极
化学物理
锂(药物)
电解质
电压
纳米技术
电气工程
物理化学
机械工程
有机化学
内分泌学
工程类
色谱法
原子力显微镜
医学
作者
Elliot J. Fuller,Evgheni Strelcov,Jamie L. Weaver,Michael W. Swift,Joshua D. Sugar,Andrei Kolmakov,Nikolai B. Zhitenev,Jabez J. McClelland,Yue Qi,Joseph A. Dura,A. Alec Talin
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2021-10-19
卷期号:6 (11): 3944-3951
被引量:27
标识
DOI:10.1021/acsenergylett.1c01960
摘要
The performance of solid-state electrochemical systems is intimately tied to the potential and lithium distributions across electrolyte–electrode junctions that give rise to interface impedance. Here, we combine two operando methods, Kelvin probe force microscopy (KPFM) and neutron depth profiling (NDP), to identify the rate-limiting interface in operating Si-LiPON-LiCoO2 solid-state batteries by mapping the contact potential difference (CPD) and the corresponding Li distributions. The contributions from ions, electrons, and interfaces are deconvolved by correlating the CPD profiles with Li-concentration profiles and by comparisons with first-principles-informed modeling. We find that the largest potential drop and variation in the Li concentration occur at the anode–electrolyte interface, with a smaller drop at the cathode–electrolyte interface and a shallow gradient within the bulk electrolyte. Correlating these results with electrochemical impedance spectroscopy following battery cycling at low and high rates confirms a long-standing conjecture linking large potential drops with a rate-limiting interfacial process.
科研通智能强力驱动
Strongly Powered by AbleSci AI