Multiparametric magnetic resonance imaging-derived radiomics for the prediction of disease-free survival in early-stage squamous cervical cancer

医学 磁共振成像 无线电技术 神经组阅片室 放射科 比例危险模型 有效扩散系数 淋巴血管侵犯 逻辑回归 宫颈癌 阶段(地层学) 核医学 癌症 内科学 转移 古生物学 神经学 精神科 生物
作者
Yan Zhou,Hailei Gu,Xinlu Zhang,Zhong-Fu Tian,Xiao‐Quan Xu,Wenwei Tang
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (4): 2540-2551 被引量:24
标识
DOI:10.1007/s00330-021-08326-6
摘要

To conduct multiparametric magnetic resonance imaging (MRI)-derived radiomics based on multi-scale tumor region for predicting disease-free survival (DFS) in early-stage squamous cervical cancer (ESSCC).A total of 191 ESSCC patients (training cohort, n = 135; validation cohort, n = 56) from March 2016 to September 2019 were retrospectively recruited. Radiomics features were derived from the T2-weighted imaging (T2WI), contrast-enhanced T1-weighted imaging (CET1WI), diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC) map for each patient. DFS-related radiomics features were selected in 3 target tumor volumes (VOIentire, VOI+5 mm, and VOI-5 mm) to build 3 rad-scores using the least absolute shrinkage and selection operator (LASSO) Cox regression analysis. Logistic regression was applied to build combined model incorporating rad-scores with clinical risk factors and compared with clinical model alone. Kaplan-Meier analysis was used to further validate prognostic value of selected clinical and radiomics characteristics.Three radiomics scores all showed favorable performances in DFS prediction. Rad-score (VOI+5 mm) performed best with a C-index of 0.750 in the training set and 0.839 in the validation set. Combined model was constructed by incorporating age categorized by 55, Federation of Gynecology and Obstetrics (Figo) stage, and lymphovascular space invasion with rad-score (VOI+5 mm). Combined model performed better than clinical model in DFS prediction in both the training set (C-index 0.815 vs 0.709; p = 0.024) and the validation set (C-index 0.866 vs 0.719; p = 0.001).Multiparametric MRI-derived radiomics based on multi-scale tumor region can aid in the prediction of DFS for ESSCC patients, thereby facilitating clinical decision-making.• Three radiomics scores based on multi-scale tumor region all showed favorable performances in DFS prediction. Rad-score (VOI+5 mm) performed best with favorable C-index values. • Combined model incorporating multiparametric MRI-based radiomics with clinical risk factors performed significantly better in DFS prediction than the clinical model. • Combined model presented as a nomogram can be easily used to predict survival, thereby facilitating clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
dddi发布了新的文献求助10
4秒前
mysunshine完成签到 ,获得积分10
6秒前
7秒前
所所应助pathway采纳,获得10
8秒前
8秒前
9秒前
我是老大应助dsuccess采纳,获得10
10秒前
郭郭要努力ya完成签到 ,获得积分10
11秒前
纪富完成签到 ,获得积分10
13秒前
dddi完成签到,获得积分20
15秒前
同玉完成签到,获得积分10
15秒前
18秒前
18秒前
Zinc发布了新的文献求助10
24秒前
29秒前
落寞小熊猫完成签到,获得积分10
30秒前
乙烯砜完成签到,获得积分10
31秒前
31秒前
32秒前
Rheton发布了新的文献求助10
37秒前
小蘑菇应助Zinc采纳,获得10
37秒前
稳重的无色完成签到,获得积分10
43秒前
45秒前
Zinc完成签到,获得积分10
46秒前
顺顺尼发布了新的文献求助10
47秒前
长江完成签到 ,获得积分10
48秒前
50秒前
英姑应助magicfu采纳,获得10
50秒前
50秒前
52秒前
SciGPT应助胡庆余堂小洋参采纳,获得10
56秒前
pluto应助三水采纳,获得10
56秒前
57秒前
1分钟前
1分钟前
Ma发布了新的文献求助10
1分钟前
1分钟前
SciGPT应助顺顺尼采纳,获得10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780426
求助须知:如何正确求助?哪些是违规求助? 3325838
关于积分的说明 10224370
捐赠科研通 3040879
什么是DOI,文献DOI怎么找? 1669111
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758649