Multiparametric magnetic resonance imaging-derived radiomics for the prediction of disease-free survival in early-stage squamous cervical cancer

医学 磁共振成像 无线电技术 神经组阅片室 放射科 比例危险模型 有效扩散系数 淋巴血管侵犯 逻辑回归 宫颈癌 阶段(地层学) 核医学 癌症 内科学 转移 古生物学 神经学 精神科 生物
作者
Yan Zhou,Hailei Gu,Xinlu Zhang,Zhong-Fu Tian,Xiao‐Quan Xu,Wenwei Tang
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (4): 2540-2551 被引量:24
标识
DOI:10.1007/s00330-021-08326-6
摘要

To conduct multiparametric magnetic resonance imaging (MRI)-derived radiomics based on multi-scale tumor region for predicting disease-free survival (DFS) in early-stage squamous cervical cancer (ESSCC).A total of 191 ESSCC patients (training cohort, n = 135; validation cohort, n = 56) from March 2016 to September 2019 were retrospectively recruited. Radiomics features were derived from the T2-weighted imaging (T2WI), contrast-enhanced T1-weighted imaging (CET1WI), diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC) map for each patient. DFS-related radiomics features were selected in 3 target tumor volumes (VOIentire, VOI+5 mm, and VOI-5 mm) to build 3 rad-scores using the least absolute shrinkage and selection operator (LASSO) Cox regression analysis. Logistic regression was applied to build combined model incorporating rad-scores with clinical risk factors and compared with clinical model alone. Kaplan-Meier analysis was used to further validate prognostic value of selected clinical and radiomics characteristics.Three radiomics scores all showed favorable performances in DFS prediction. Rad-score (VOI+5 mm) performed best with a C-index of 0.750 in the training set and 0.839 in the validation set. Combined model was constructed by incorporating age categorized by 55, Federation of Gynecology and Obstetrics (Figo) stage, and lymphovascular space invasion with rad-score (VOI+5 mm). Combined model performed better than clinical model in DFS prediction in both the training set (C-index 0.815 vs 0.709; p = 0.024) and the validation set (C-index 0.866 vs 0.719; p = 0.001).Multiparametric MRI-derived radiomics based on multi-scale tumor region can aid in the prediction of DFS for ESSCC patients, thereby facilitating clinical decision-making.• Three radiomics scores based on multi-scale tumor region all showed favorable performances in DFS prediction. Rad-score (VOI+5 mm) performed best with favorable C-index values. • Combined model incorporating multiparametric MRI-based radiomics with clinical risk factors performed significantly better in DFS prediction than the clinical model. • Combined model presented as a nomogram can be easily used to predict survival, thereby facilitating clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
哈哈哈发布了新的文献求助10
1秒前
顾矜应助无敌幸运儿采纳,获得10
1秒前
1秒前
GH07355018发布了新的文献求助10
2秒前
xxx完成签到 ,获得积分10
2秒前
情怀应助arsenal采纳,获得10
2秒前
叶子发布了新的文献求助10
2秒前
穆立果应助swing采纳,获得10
3秒前
CAOHOU应助xun采纳,获得10
3秒前
CAOHOU应助xun采纳,获得10
3秒前
keyana25完成签到,获得积分10
3秒前
Fan完成签到,获得积分10
4秒前
李爱国应助453采纳,获得10
4秒前
Hello应助宇宙超人采纳,获得10
4秒前
5秒前
领导范儿应助星沉静默采纳,获得10
5秒前
Clovis33完成签到 ,获得积分10
6秒前
共享精神应助qiaokizhang采纳,获得10
6秒前
6秒前
177ycd发布了新的文献求助10
7秒前
8秒前
明理的思卉完成签到,获得积分20
8秒前
8秒前
8秒前
DJ完成签到,获得积分10
9秒前
9秒前
酷炫觅松发布了新的文献求助10
11秒前
rich完成签到,获得积分20
11秒前
躲哪个草发布了新的文献求助10
11秒前
SciGPT应助蛋白激酶采纳,获得10
12秒前
12秒前
瓦力文发布了新的文献求助30
13秒前
13秒前
13秒前
顾矜应助小黄采纳,获得10
14秒前
彭于晏应助ember采纳,获得10
15秒前
kaiX完成签到,获得积分10
16秒前
16秒前
科研通AI2S应助李家酥铺采纳,获得10
17秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
A First Course in Bayesian Statistical Methods 400
American Historical Review - Volume 130, Issue 2, June 2025 (Full Issue) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3912420
求助须知:如何正确求助?哪些是违规求助? 3457670
关于积分的说明 10897006
捐赠科研通 3183982
什么是DOI,文献DOI怎么找? 1759971
邀请新用户注册赠送积分活动 851236
科研通“疑难数据库(出版商)”最低求助积分说明 792559