Explainable Diabetic Retinopathy Detection and Retinal Image Generation

可解释性 计算机科学 人工智能 糖尿病性视网膜病变 深度学习 探测器 医学影像学 图像(数学) 特征提取 视网膜病变 特征(语言学) 计算机视觉 医学 模式识别(心理学) 糖尿病 电信 内分泌学 哲学 语言学
作者
Yuhao Niu,Lin Gu,Yitian Zhao,Feng Lu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (1): 44-55 被引量:42
标识
DOI:10.1109/jbhi.2021.3110593
摘要

Though deep learning has shown successful performance in classifying the label and severity stage of certain diseases, most of them give few explanations on how to make predictions. Inspired by Koch's Postulates, the foundation in evidence-based medicine (EBM) to identify the pathogen, we propose to exploit the interpretability of deep learning application in medical diagnosis. By isolating neuron activation patterns from a diabetic retinopathy (DR) detector and visualizing them, we can determine the symptoms that the DR detector identifies as evidence to make prediction. To be specific, we first define novel pathological descriptors using activated neurons of the DR detector to encode both spatial and appearance information of lesions. Then, to visualize the symptom encoded in the descriptor, we propose Patho-GAN, a new network to synthesize medically plausible retinal images. By manipulating these descriptors, we could even arbitrarily control the position, quantity, and categories of generated lesions. We also show that our synthesized images carry the symptoms directly related to diabetic retinopathy diagnosis. Our generated images are both qualitatively and quantitatively superior to the ones by previous methods. Besides, compared to existing methods that take hours to generate an image, our second level speed endows the potential to be an effective solution for data augmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Singularity应助芦庭杨采纳,获得10
刚刚
2秒前
高贵芷波发布了新的文献求助10
3秒前
4秒前
乐乐完成签到 ,获得积分10
4秒前
高序发布了新的文献求助10
6秒前
7秒前
左丘绝山发布了新的文献求助10
8秒前
高产佩奇完成签到,获得积分10
10秒前
cmzj完成签到,获得积分10
10秒前
FashionBoy应助左丘绝山采纳,获得10
11秒前
SciGPT应助糯糯采纳,获得10
12秒前
mqthhh发布了新的文献求助10
12秒前
13秒前
小生不才发布了新的文献求助10
13秒前
TTYYI完成签到 ,获得积分10
14秒前
15秒前
15秒前
高产佩奇发布了新的文献求助10
20秒前
科研通AI2S应助mqthhh采纳,获得10
20秒前
GEZHE完成签到,获得积分10
21秒前
21秒前
23秒前
ding应助勤劳的梦易采纳,获得10
23秒前
绿油油完成签到,获得积分10
24秒前
Somnolence咩发布了新的文献求助30
25秒前
liupan002完成签到,获得积分10
25秒前
28秒前
29秒前
30秒前
31秒前
32秒前
33秒前
马思维发布了新的文献求助10
33秒前
帅气草莓发布了新的文献求助10
34秒前
34秒前
Swear123完成签到,获得积分10
34秒前
斯文败类应助Dr采纳,获得10
35秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810513
求助须知:如何正确求助?哪些是违规求助? 3354951
关于积分的说明 10373613
捐赠科研通 3071505
什么是DOI,文献DOI怎么找? 1686999
邀请新用户注册赠送积分活动 811324
科研通“疑难数据库(出版商)”最低求助积分说明 766616