代谢工程
生物技术
基因工程
寄主(生物学)
糖基转移酶
选择(遗传算法)
代谢途径
生物化学
生物
计算生物学
酶
遗传学
计算机科学
基因
人工智能
作者
Mengyao Lu,Imann Mosleh,Alireza Abbaspourrad
标识
DOI:10.1021/acssynbio.1c00063
摘要
Human milk oligosaccharides (HMOs) are one of the important ingredients in human milk, which have attracted great interest due to their beneficial effect on the health of newborns. The large-scale production of HMOs has been researched using engineered microbial routes due to the availability, safety, and low cost of host strains. In addition, the development of molecular biology technology and metabolic engineering has promoted the effectiveness of HMOs production. According to current reports, 2′-fucosyllactose (2′-FL), 3-fucosyllactose (3-FL), lacto-N-tetraose (LNT), lacto-N-neotetraose (LNnT), 3′-sialyllactose (3′-SL), 6′-sialyllactose (6′-SL), and some fucosylated HMOs with complex structures have been produced via the engineered microbial route, with 2′-FL having been produced the most. However, due to the uncertainty of metabolic patterns, the selection of host strains has certain limitations. Aside from that, the expression of appropriate glycosyltransferase in microbes is key to the synthesis of different HMOs. Therefore, finding a safe and efficient glycosyltransferase has to be addressed when using engineered microbial pathways. In this review, the latest research on the production of HMOs using engineered microbial routes is reported. The selection of host strains and adapting different metabolic pathways helped researchers designing engineered microbial routes that are more conducive to HMOs production.
科研通智能强力驱动
Strongly Powered by AbleSci AI