Simultaneous Extraction of Multi-Scale Structural Features and the Sequential Information With an End-To-End mCNN-HMM Combined Model for Fiber Distributed Acoustic Sensor

计算机科学 特征(语言学) 欧几里德距离 试验数据 卷积神经网络 人工智能 隐马尔可夫模型 语音识别 特征提取 模式识别(心理学) 语言学 哲学 程序设计语言
作者
Huijuan Wu,Siqi Yang,Xinyu Liu,Chenrui Xu,Hao Lu,Chaoqun Wang,Ke Qin,Zhengning Wang,Yunjiang Rao,Abdulafeez Olawale Olaribigbe
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:39 (20): 6606-6616 被引量:25
标识
DOI:10.1109/jlt.2021.3102265
摘要

Presently, it is still challenging to obtain satisfied identification results for long-distance safety monitoring with fiber distributed acoustic sensor (DAS) in practical complicated burying environments. Thus, extracting increasingly abundant features has always been the direction of DAS signal recognition. This paper proposes a new recognition method using an end-to-end mCNN-HMM combined model, which can identify the vibration sources more correctly by simultaneously extracting multi-scale structural features and the sequential information of the DAS signals. A modified multi-scale convolution neural network (mCNN) is designed to automatically extract the DAS signals' local structural features from a multilevel perspective and their relationship in the proposed model. A hidden Markov model (HMM) is then used to mine the sequential information of the whole sample's previously extracted features. The test results based on real field data show that it outperforms the HMM model with the all-around hand-crafted features, the CNN-HMM model, and the MS-CNN-HMM model in both the feature extraction ability and the recognition accuracy in the case of little increase in time consumption. Moreover, the Euclidean distance between the posterior probabilities classified correctly and incorrectly is proposed to evaluate the test samples' feature distinguishability for different recognition models. Then the feature extraction capabilities of the models can be measured in an objective parameter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助哈哈哈采纳,获得10
刚刚
霜降发布了新的文献求助10
2秒前
兵临城下发布了新的文献求助10
2秒前
脑洞疼应助烂漫的断秋采纳,获得10
2秒前
安然完成签到,获得积分10
3秒前
白茶清欢完成签到 ,获得积分10
4秒前
浮游应助sian采纳,获得10
4秒前
fengpu完成签到,获得积分0
4秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
思茶念酒完成签到 ,获得积分10
7秒前
霜降完成签到,获得积分20
9秒前
9秒前
打打应助777采纳,获得10
9秒前
10秒前
yw发布了新的文献求助10
10秒前
11秒前
Juliette发布了新的文献求助10
12秒前
12秒前
郑春梅发布了新的文献求助10
14秒前
科研通AI6应助明白放弃采纳,获得30
14秒前
宝贝丫头发布了新的文献求助10
14秒前
搜集达人应助鱼儿采纳,获得10
17秒前
哈哈哈发布了新的文献求助10
17秒前
18秒前
19秒前
NSQ完成签到,获得积分20
21秒前
婷婷完成签到,获得积分10
22秒前
22秒前
香妃发布了新的文献求助10
23秒前
jy发布了新的文献求助10
23秒前
领导范儿应助兵临城下采纳,获得10
23秒前
24秒前
yw完成签到,获得积分10
24秒前
25秒前
25秒前
绾绾完成签到 ,获得积分10
27秒前
NSQ发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422108
求助须知:如何正确求助?哪些是违规求助? 4537012
关于积分的说明 14155721
捐赠科研通 4453595
什么是DOI,文献DOI怎么找? 2442968
邀请新用户注册赠送积分活动 1434374
关于科研通互助平台的介绍 1411439