Simultaneous Extraction of Multi-Scale Structural Features and the Sequential Information With an End-To-End mCNN-HMM Combined Model for Fiber Distributed Acoustic Sensor

计算机科学 特征(语言学) 欧几里德距离 试验数据 卷积神经网络 人工智能 隐马尔可夫模型 语音识别 特征提取 模式识别(心理学) 语言学 哲学 程序设计语言
作者
Huijuan Wu,Siqi Yang,Xinyu Liu,Chenrui Xu,Hao Lu,Chaoqun Wang,Ke Qin,Zhengning Wang,Yunjiang Rao,Abdulafeez Olawale Olaribigbe
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:39 (20): 6606-6616 被引量:25
标识
DOI:10.1109/jlt.2021.3102265
摘要

Presently, it is still challenging to obtain satisfied identification results for long-distance safety monitoring with fiber distributed acoustic sensor (DAS) in practical complicated burying environments. Thus, extracting increasingly abundant features has always been the direction of DAS signal recognition. This paper proposes a new recognition method using an end-to-end mCNN-HMM combined model, which can identify the vibration sources more correctly by simultaneously extracting multi-scale structural features and the sequential information of the DAS signals. A modified multi-scale convolution neural network (mCNN) is designed to automatically extract the DAS signals' local structural features from a multilevel perspective and their relationship in the proposed model. A hidden Markov model (HMM) is then used to mine the sequential information of the whole sample's previously extracted features. The test results based on real field data show that it outperforms the HMM model with the all-around hand-crafted features, the CNN-HMM model, and the MS-CNN-HMM model in both the feature extraction ability and the recognition accuracy in the case of little increase in time consumption. Moreover, the Euclidean distance between the posterior probabilities classified correctly and incorrectly is proposed to evaluate the test samples' feature distinguishability for different recognition models. Then the feature extraction capabilities of the models can be measured in an objective parameter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
万能图书馆应助lucky采纳,获得10
2秒前
上官若男应助sdad采纳,获得10
2秒前
糖肉肉发布了新的文献求助20
3秒前
阿信完成签到,获得积分10
3秒前
3秒前
3秒前
Sxq完成签到,获得积分10
4秒前
乐观帅哥完成签到,获得积分10
5秒前
6秒前
6秒前
lx84317261完成签到,获得积分10
6秒前
求助人员发布了新的文献求助10
7秒前
李健应助网红刘教授采纳,获得10
8秒前
贝贝发布了新的文献求助10
8秒前
8秒前
dahafei完成签到,获得积分10
9秒前
10秒前
ssong发布了新的文献求助10
10秒前
14秒前
Ay4nami发布了新的文献求助10
14秒前
15秒前
个性的平蓝完成签到 ,获得积分10
15秒前
CKX完成签到,获得积分10
16秒前
英姑应助juphen2采纳,获得10
16秒前
魔幻跳跳糖完成签到,获得积分10
17秒前
机灵寒烟完成签到,获得积分10
18秒前
18秒前
19秒前
ssong完成签到,获得积分10
19秒前
zzz完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
传奇3应助风中诺言采纳,获得10
22秒前
Owen应助Espionage采纳,获得10
22秒前
23秒前
123完成签到 ,获得积分20
23秒前
sdpx完成签到 ,获得积分10
23秒前
CodeCraft应助youhai采纳,获得10
23秒前
量子星尘发布了新的文献求助10
24秒前
gnr2000发布了新的文献求助30
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771006
求助须知:如何正确求助?哪些是违规求助? 5588895
关于积分的说明 15426243
捐赠科研通 4904384
什么是DOI,文献DOI怎么找? 2638696
邀请新用户注册赠送积分活动 1586530
关于科研通互助平台的介绍 1541682