Automation of software test data generation using genetic algorithm and reinforcement learning

计算机科学 自动化 软件 测试管理方法 启发式 遗传算法 过程(计算) 试验数据 数据挖掘 模因算法 机器学习 基于搜索的软件工程 算法 人工智能 软件系统 软件开发 软件开发过程 软件建设 软件工程 机械工程 工程类 程序设计语言 操作系统
作者
Mehdi Esnaashari,Amir Hossein Damia
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:183: 115446-115446 被引量:49
标识
DOI:10.1016/j.eswa.2021.115446
摘要

Software testing is one of the most important methods of analyzing software quality assurance. This process is very time consuming and expensive and accounts for almost 50% of the software production cost. In addition to the cost problem, the nature of the test, which seeks errors in the program, is such that software engineers are not interested in doing the process, so we are looking to use automated methods to reduce the cost and time of the test. In the last decade, various methods have been introduced for the automatic test data generation, the purpose of which is to maximize the detection of errors by generating minimum amount of test data. The main issue in the test data generation process is to determine the input data of the program in such a way that it meets the specified test criterion. In this research, a structural method has been used in order to automate the process of test data generation considering the criterion of covering all finite paths. In structural methods, the problem is converted into a search problem and meta-heuristic algorithms are used to solve it. The proposed method in this paper is a memetic algorithm in which reinforcement learning is used as a local search method within a genetic algorithm. Experimental results have shown that this method is faster for test data generation than many existing evolutionary or meta-heuristic algorithms and can provide better coverage with fewer evaluations. Compared algorithms include: conventional genetic algorithm, a variety of improvements to the genetic algorithm, random search, particle swarm optimization, bees algorithm, ant colony optimization, simulated annealing, hill climbing, and tabu search.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
完美世界应助细菌性肺炎采纳,获得10
1秒前
1秒前
淼嗨嗨发布了新的文献求助10
1秒前
centlay给centlay的求助进行了留言
2秒前
3秒前
花花完成签到,获得积分10
3秒前
酷波er应助云遮月采纳,获得10
3秒前
mc发布了新的文献求助10
3秒前
简忆发布了新的文献求助10
4秒前
4秒前
4秒前
小库的咖喱完成签到,获得积分10
4秒前
aaron9898发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
6秒前
小二郎应助weber采纳,获得10
6秒前
笨笨的乐驹完成签到,获得积分20
6秒前
赵子龙发布了新的文献求助10
7秒前
LY完成签到,获得积分10
7秒前
邓梦梦发布了新的文献求助10
7秒前
xxx完成签到,获得积分10
8秒前
若水三千发布了新的文献求助10
9秒前
catherine发布了新的文献求助10
9秒前
9秒前
Tracy发布了新的文献求助10
10秒前
薛教授发布了新的文献求助10
10秒前
10秒前
10秒前
zyc发布了新的文献求助10
10秒前
卡卡西应助迅速的鹤采纳,获得30
11秒前
困困困关注了科研通微信公众号
11秒前
wangdana完成签到,获得积分10
12秒前
12秒前
12秒前
星辰大海应助風起天岚采纳,获得10
12秒前
韩涵发布了新的文献求助20
13秒前
领导范儿应助捏个小雪团采纳,获得10
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818231
求助须知:如何正确求助?哪些是违规求助? 3361374
关于积分的说明 10412557
捐赠科研通 3079607
什么是DOI,文献DOI怎么找? 1691291
邀请新用户注册赠送积分活动 814471
科研通“疑难数据库(出版商)”最低求助积分说明 768178