SFR-Net: Scattering Feature Relation Network for Aircraft Detection in Complex SAR Images

遥感 合成孔径雷达 特征(语言学) 计算机科学 假警报 散射 杠杆(统计) 计算机视觉 雷达 人工智能 模式识别(心理学) 电信 地质学 光学 物理 哲学 语言学
作者
Yuzhuo Kang,Zhirui Wang,Jiamei Fu,Xian Sun,Kun Fu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-17 被引量:24
标识
DOI:10.1109/tgrs.2021.3130899
摘要

Aircraft detection in synthetic aperture radar (SAR) images plays a significant role in dynamic monitoring and national security. Previous methods have difficulty in obtaining the desirable detection performance due to the interference of complex scenes and diversity of aircraft sizes. In order to solve these problems, we propose an innovative scattering feature relation network (SFR-Net) in this article. First, considering that the strong scattering points of the aircraft in SAR images are usually discrete, we leverage the proposed scattering point relation module to fulfill the analysis and correlation of scattering points. By enhancing the characteristics and relationships among the scattering points, this method is beneficial to guarantee the completeness of aircraft detection results. Second, we design a salient fusion module to adaptively aggregate the features from different layers of SFR-Net with rich semantic information and plentiful details, which can highlight the significant objects with different sizes and enhance the distinguishable features. Third, to reduce the false alarm and improve the localization accuracy, the contextual feature attention is presented to capture the global spatial and semantic information with a large receptive field. Overall, the SFR-Net is designed based on the SAR imaging mechanism and the scattering characteristics of aircrafts. The extensive experiments are conducted on the SAR aircraft detection dataset (AIRD) from the Gaofen-3 satellite to demonstrate the effectiveness of the SFR-Net and also illustrate that our method achieves state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助研友_zndy9Z采纳,获得10
刚刚
1秒前
大模型应助SG采纳,获得10
1秒前
gz000111发布了新的文献求助10
2秒前
bb完成签到,获得积分10
2秒前
在水一方应助学术废柴采纳,获得10
3秒前
3秒前
PQ完成签到,获得积分10
3秒前
6秒前
gz000111完成签到,获得积分10
10秒前
10秒前
Neltharion完成签到,获得积分10
12秒前
12秒前
彩色的过客完成签到 ,获得积分10
13秒前
to高坚果发布了新的文献求助10
13秒前
13秒前
16秒前
17秒前
南相完成签到,获得积分20
17秒前
XC完成签到,获得积分10
17秒前
hanhan发布了新的文献求助10
17秒前
lilili完成签到,获得积分10
18秒前
好久不见完成签到,获得积分10
19秒前
圈圈完成签到,获得积分10
20秒前
dandan发布了新的文献求助10
20秒前
科研通AI5应助supersunshine采纳,获得10
20秒前
22秒前
24秒前
爆米花应助稳重的招牌采纳,获得10
24秒前
Keray完成签到,获得积分10
24秒前
sy完成签到 ,获得积分10
25秒前
27秒前
27秒前
完美世界应助宋雨采纳,获得10
28秒前
小小雪完成签到 ,获得积分10
28秒前
老茗同学关注了科研通微信公众号
28秒前
Wangyingjie5发布了新的文献求助10
28秒前
洁面乳发布了新的文献求助10
29秒前
共享精神应助风趣的野狼采纳,获得50
30秒前
务实的凝天完成签到,获得积分10
30秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802474
求助须知:如何正确求助?哪些是违规求助? 3348068
关于积分的说明 10336437
捐赠科研通 3064012
什么是DOI,文献DOI怎么找? 1682348
邀请新用户注册赠送积分活动 808078
科研通“疑难数据库(出版商)”最低求助积分说明 763997