SFR-Net: Scattering Feature Relation Network for Aircraft Detection in Complex SAR Images

遥感 合成孔径雷达 特征(语言学) 计算机科学 假警报 散射 杠杆(统计) 计算机视觉 雷达 人工智能 模式识别(心理学) 电信 地质学 光学 物理 哲学 语言学
作者
Yuzhuo Kang,Zhirui Wang,Jiamei Fu,Xian Sun,Kun Fu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-17 被引量:24
标识
DOI:10.1109/tgrs.2021.3130899
摘要

Aircraft detection in synthetic aperture radar (SAR) images plays a significant role in dynamic monitoring and national security. Previous methods have difficulty in obtaining the desirable detection performance due to the interference of complex scenes and diversity of aircraft sizes. In order to solve these problems, we propose an innovative scattering feature relation network (SFR-Net) in this article. First, considering that the strong scattering points of the aircraft in SAR images are usually discrete, we leverage the proposed scattering point relation module to fulfill the analysis and correlation of scattering points. By enhancing the characteristics and relationships among the scattering points, this method is beneficial to guarantee the completeness of aircraft detection results. Second, we design a salient fusion module to adaptively aggregate the features from different layers of SFR-Net with rich semantic information and plentiful details, which can highlight the significant objects with different sizes and enhance the distinguishable features. Third, to reduce the false alarm and improve the localization accuracy, the contextual feature attention is presented to capture the global spatial and semantic information with a large receptive field. Overall, the SFR-Net is designed based on the SAR imaging mechanism and the scattering characteristics of aircrafts. The extensive experiments are conducted on the SAR aircraft detection dataset (AIRD) from the Gaofen-3 satellite to demonstrate the effectiveness of the SFR-Net and also illustrate that our method achieves state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助什么东西采纳,获得20
刚刚
没有名字举报年轻的觅风求助涉嫌违规
刚刚
孤独的素发布了新的文献求助10
刚刚
Lychee完成签到 ,获得积分10
2秒前
2秒前
keke完成签到,获得积分10
2秒前
乐乐应助DQ采纳,获得10
3秒前
3秒前
1230发布了新的文献求助10
3秒前
ustcliyang完成签到,获得积分10
3秒前
意已发布了新的文献求助30
4秒前
5秒前
苏__发布了新的文献求助10
5秒前
桐桐应助King16采纳,获得10
5秒前
5秒前
Akim应助怕孤单的夜云采纳,获得10
6秒前
王昊应助土豆泥采纳,获得10
6秒前
大菠萝完成签到 ,获得积分10
6秒前
思源应助重要白开水采纳,获得10
6秒前
烟花应助天才小熊猫采纳,获得30
7秒前
7秒前
7秒前
感谢感谢完成签到,获得积分10
8秒前
zhonglv7应助光催采纳,获得10
8秒前
8秒前
义气的惜霜完成签到,获得积分10
9秒前
太叔静竹完成签到,获得积分10
9秒前
SciGPT应助旺旺采纳,获得10
9秒前
10秒前
沉静凡白完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
10秒前
欣慰的成仁完成签到,获得积分20
10秒前
10秒前
zcx发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助20
11秒前
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
苯丙氨酸解氨酶的祖先序列重建及其催化性能 700
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4847551
求助须知:如何正确求助?哪些是违规求助? 4147348
关于积分的说明 12845232
捐赠科研通 3894221
什么是DOI,文献DOI怎么找? 2140693
邀请新用户注册赠送积分活动 1160255
关于科研通互助平台的介绍 1060641