Esophageal discoid foreign body detection and classification using artificial intelligence

异物 人工智能 分类器(UML) 医学 射线照相术 异物 探测器 计算机视觉 急诊分诊台 计算机科学 放射科 外科 医疗急救 电信
作者
Bradley S. Rostad,Edward J. Richer,Erica L. Riedesel,Adina Alazraki
出处
期刊:Pediatric Radiology [Springer Science+Business Media]
卷期号:52 (3): 477-482 被引量:8
标识
DOI:10.1007/s00247-021-05240-3
摘要

Early and accurate radiographic diagnosis is required for the management of children with radio-opaque esophageal foreign bodies. Button batteries are some of the most dangerous esophageal foreign bodies and coins are among the most common. We hypothesized that artificial intelligence could be used to triage radiographs with esophageal button batteries and coins.Our primary objective was to train an object detector to detect esophageal foreign bodies, whether button battery or coin. Our secondary objective was to train an image classifier to classify the detected foreign body as either a button battery or a coin.We trained an object detector to detect button batteries and coins. The training data set for the object detector was 57 radiographs, consisting of 3 groups of 19 images each with either an esophageal button battery, esophageal coin or no foreign body. The foreign bodies were endoscopically confirmed, and the groups were age and gender matched. We then trained an image classifier to classify the detected foreign body as either a button battery or a coin. The training data set for the image classifier consisted of 19 radiographs of button batteries and 19 of coins, cropped from the object detector training data set. The object detector and image classifier were then tested on 103 radiographs with an esophageal foreign body, and 103 radiographs without a foreign body.The object detector was 100% sensitive and specific for detecting an esophageal foreign body. The image classifier accurately classified all 6/6 (100%) button batteries in the testing data set and 93/95 (97.9%) of the coins. The remaining two coins were incorrectly classified as button batteries. In addition to these images with a single button battery or coin, there were two unique cases in the testing data set: a stacked button battery and coin, and two stacked coins, both of which were classified as coins.Artificial intelligence models show promise in detecting and classifying esophageal discoid foreign bodies and could potentially be used to triage radiographs for radiologist interpretation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tender发布了新的文献求助20
2秒前
Iridescent_发布了新的文献求助10
4秒前
5秒前
丘比特应助学术大王采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
5秒前
超级的妙晴完成签到 ,获得积分10
7秒前
桐桐应助今天心情好朋友采纳,获得10
9秒前
繁荣的凝荷完成签到 ,获得积分10
9秒前
9秒前
Alex应助陈老太采纳,获得10
10秒前
科研通AI5应助舒适路人采纳,获得10
11秒前
烟花应助zlren采纳,获得10
11秒前
简朴数据线完成签到,获得积分20
11秒前
zhinian完成签到 ,获得积分10
12秒前
SYLH应助abcd_1067采纳,获得10
13秒前
徐哈哈发布了新的文献求助10
15秒前
润泽完成签到,获得积分10
16秒前
16秒前
烟花应助11采纳,获得10
17秒前
hying发布了新的文献求助10
17秒前
17秒前
18秒前
20秒前
球球尧伞耳完成签到,获得积分10
20秒前
orixero应助研友_n0kYwL采纳,获得10
21秒前
Tender完成签到,获得积分10
22秒前
11哥应助舒适路人采纳,获得10
23秒前
慕青应助猪猪hero采纳,获得10
23秒前
赖向珊发布了新的文献求助10
24秒前
24秒前
25秒前
拼搏绿柏完成签到,获得积分10
25秒前
25秒前
hanzhiyuxing发布了新的文献求助10
25秒前
daiyao发布了新的文献求助10
25秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784400
求助须知:如何正确求助?哪些是违规求助? 3329418
关于积分的说明 10242321
捐赠科研通 3044942
什么是DOI,文献DOI怎么找? 1671443
邀请新用户注册赠送积分活动 800346
科研通“疑难数据库(出版商)”最低求助积分说明 759372