From Noise to Bias: Overconfidence in New Product Forecasting

过度自信效应 程式化事实 杠杆(统计) 计算机科学 计量经济学 产品(数学) 噪音(视频) 新产品开发 经济 微观经济学 人工智能 心理学 数学 宏观经济学 图像(数学) 社会心理学 几何学 管理
作者
Daniel Feiler,Jordan Tong
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:68 (6): 4685-4702 被引量:29
标识
DOI:10.1287/mnsc.2021.4102
摘要

We study decision behavior in the selection, forecasting, and production for a new product. In a stylized behavioral model and five experiments, we generate new insight into when and why this combination of tasks can lead to overconfidence (specifically, overestimating the demand). We theorize that cognitive limitations lead to noisy interpretations of signal information, which itself is noisy. Because people are statistically naive, they directly use their noisy interpretation of the signal information as their forecast, thereby underaccounting for the uncertainty that underlies it. This process leads to unbiased forecast errors when considering products in isolation, but leads to positively biased forecasts for the products people choose to launch due to a selection effect. We show that this selection-driven overconfidence can be sufficiently problematic that, under certain conditions, choosing the product randomly can actually yield higher profits than when individuals themselves choose the product to launch. We provide mechanism evidence by manipulating the interpretation noise through information complexity—showing that even when the information is equivalent from a Bayesian perspective, more complicated information leads to more noise, which, in turn, leads to more overconfidence in the chosen products. Finally, we leverage this insight to show that getting a second independent forecast for a chosen product can significantly mitigate the overconfidence problem, even when both individuals have the same information. This paper was accepted by Charles Corbett, operations management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
新火应助满意的一刀采纳,获得30
1秒前
川胖完成签到,获得积分10
1秒前
初夏发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
Jasper应助tt采纳,获得10
4秒前
5秒前
美好斓发布了新的文献求助10
5秒前
英勇代荷发布了新的文献求助10
5秒前
寻道图强应助风清扬采纳,获得50
7秒前
无辜澜发布了新的文献求助10
8秒前
XIAOMEIMA完成签到,获得积分10
8秒前
lxxy完成签到,获得积分10
8秒前
mukeke发布了新的文献求助10
8秒前
9秒前
852应助超级碧曼采纳,获得10
9秒前
bkagyin应助He采纳,获得30
9秒前
可爱的函函应助LQ采纳,获得10
9秒前
OrangeWang完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
小冉发布了新的文献求助10
13秒前
wenchong发布了新的文献求助20
14秒前
14秒前
无奈发布了新的文献求助10
14秒前
15秒前
初夏完成签到,获得积分10
15秒前
一鸣发布了新的文献求助30
16秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
无极微光应助科研通管家采纳,获得20
18秒前
浮游应助科研通管家采纳,获得10
18秒前
18秒前
无花果应助科研通管家采纳,获得10
18秒前
dreamfox发布了新的文献求助10
18秒前
香蕉觅云应助科研通管家采纳,获得10
18秒前
tt发布了新的文献求助10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
yyzhou应助科研通管家采纳,获得10
18秒前
共享精神应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 600
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492371
求助须知:如何正确求助?哪些是违规求助? 4590495
关于积分的说明 14430692
捐赠科研通 4522967
什么是DOI,文献DOI怎么找? 2478089
邀请新用户注册赠送积分活动 1463151
关于科研通互助平台的介绍 1435822