A deep learning method for eliminating head motion artifacts in computed tomography

人工智能 计算机科学 计算机视觉 卷积神经网络 工件(错误) 人工神经网络 图像质量 噪音(视频) 相似性(几何) 模式识别(心理学) 运动场 运动估计 图像(数学)
作者
Bin Su,Yuting Wen,Yanyan Liu,Shu Liao,Jianwei Fu,Guotao Quan,Zhenlin Li
出处
期刊:Medical Physics [Wiley]
卷期号:49 (1): 411-419 被引量:19
标识
DOI:10.1002/mp.15354
摘要

Involuntary patient movement results in data discontinuities during computed tomography (CT) scans which lead to a serious degradation in the image quality. In this paper, we specifically address artifacts induced by patient motion during a head scan.Instead of trying to solve an inverse problem, we developed a motion simulation algorithm to synthesize images with motion-induced artifacts. The artifacts induced by rotation, translation, oscillation and any possible combination are considered. Taking advantage of the powerful learning ability of neural networks, we designed a novel 3D network structure with both a large reception field and a high image resolution to map the artifact-free images from artifact-contaminated images. Quantitative results of the proposed method were evaluated against the results of U-Net and proposed networks without dilation structure. Thirty sets of motion contaminated images from two hospitals were selected to do a clinical evaluation.Facilitating the training dataset with artifacts induced by variable motion patterns and the neural network, the artifact can be removed with good performance. Validation dataset with simulated random motion pattern showed outperformed image correction, and quantitative results showed the proposed network had the lowest normalized root-mean-square error, highest peak signal-to-noise ratio and structure similarity, indicating our network gave the best approximation of gold standard. Clinical image processing results further confirmed the effectiveness of our method.We proposed a novel deep learning-based algorithm to eliminate motion artifacts. The convolutional neural networks trained with synthesized image pairs achieved promising results in artifacts reduction. The corrected images increased the diagnostic confidence compared with artifacts contaminated images. We believe that the correction method can restore the ability to successfully diagnose and avoid repeated CT scans in certain clinical circumstances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
谢一清完成签到,获得积分20
刚刚
1秒前
共享精神应助czs采纳,获得10
1秒前
kyle发布了新的文献求助10
2秒前
研友_LOomaL发布了新的文献求助20
3秒前
3秒前
澜瓜瓜完成签到,获得积分10
3秒前
burning完成签到,获得积分10
4秒前
zh发布了新的文献求助10
4秒前
王路飞发布了新的文献求助10
4秒前
乐乐应助狗蛋采纳,获得10
5秒前
chase发布了新的文献求助10
6秒前
6秒前
lbc完成签到,获得积分10
7秒前
lvsoul应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得30
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
cupric应助科研通管家采纳,获得20
8秒前
浮游应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得30
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
子铭发布了新的文献求助10
9秒前
打打应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
牛顿宇应助科研通管家采纳,获得10
9秒前
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
无极微光应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
大模型应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得30
10秒前
小张应助科研通管家采纳,获得10
10秒前
lzzmy完成签到,获得积分20
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
无极微光应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4968870
求助须知:如何正确求助?哪些是违规求助? 4226101
关于积分的说明 13161880
捐赠科研通 4013284
什么是DOI,文献DOI怎么找? 2195956
邀请新用户注册赠送积分活动 1209359
关于科研通互助平台的介绍 1123427