宜居性
火星探测计划
天体生物学
非生物成分
环境科学
极端环境
火星探测
物理
行星
生物
生态学
天文
遗传学
细菌
作者
Björn Huwe,Annelie Fiedler,Sophie Moritz,Elke Rabbow,Jean Pierre de Vera,Jasmin Joshi
出处
期刊:Astrobiology
[Mary Ann Liebert]
日期:2019-02-01
卷期号:19 (2): 221-232
被引量:12
标识
DOI:10.1089/ast.2018.1889
摘要
As a part of the European Space Agency mission "EXPOSE-R2" on the International Space Station (ISS), the BIOMEX (Biology and Mars Experiment) experiment investigates the habitability of Mars and the limits of life. In preparation for the mission, experimental verification tests and scientific verification tests simulating different combinations of abiotic space- and Mars-like conditions were performed to analyze the resistance of a range of model organisms. The simulated abiotic space- and Mars-stressors were extreme temperatures, vacuum, and Mars-like surface ultraviolet (UV) irradiation in different atmospheres. We present for the first time simulated space exposure data of mosses using plantlets of the bryophyte genus Grimmia, which is adapted to high altitudinal extreme abiotic conditions at the Swiss Alps. Our preflight tests showed that severe UVR200-400nm irradiation with the maximal dose of 5 and 6.8 × 105 kJ·m-2, respectively, was the only stressor with a negative impact on the vitality with a 37% (terrestrial atmosphere) or 36% reduction (space- and Mars-like atmospheres) in photosynthetic activity. With every exposure to UVR200-400nm 105 kJ·m-2, the vitality of the bryophytes dropped by 6%. No effect was found, however, by any other stressor. As the mosses were still vital after doses of ultraviolet radiation (UVR) expected during the EXPOSE-R2 mission on ISS, we show that this earliest extant lineage of land plants is highly resistant to extreme abiotic conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI