Novel roughness measurement for grinding surfaces using simulated data by transfer kernel learning

学习迁移 研磨 计算机科学 核(代数) 表面光洁度 表面粗糙度 人工智能 传输(计算) 材料科学 模式识别(心理学) 生物系统 机器学习 复合材料 数学 生物 组合数学 并行计算
作者
Hang Zhang,Jian Liu,Shengfeng Chen,Wei-Fang Wang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:73: 508-519 被引量:20
标识
DOI:10.1016/j.asoc.2018.08.042
摘要

Abstract In conventional visual roughness measurement methods, constructing a relationship between an image feature index and surface roughness requires a large number of samples with a wide range of known roughness at uniform intervals as input for training or fitting. Considering these challenges, this paper has proposed a simulated data and transfer kernel learning-based visual roughness measurement method. In the proposed method, a virtual sample with specified roughness is first created via non-Gaussian surface digital simulation and three-dimensional entity modeling technology. After that step, a surface image of the virtual and processed samples is generated through image simulation and actual imaging experiments. Next, the image feature index distribution discrepancy between the simulation and actual domains is adapted by transfer kernel learning. A regression model is trained based on the simulated samples with known roughness, and is later generalized to the actual domain via a cross-domain kernel matrix to predict the roughness of the processed samples. To transfer the similar red and green mixing effects between the actual and simulation domains, a relative mixing degree index and a mixing region area index are designed based on the color information. By comparing these two indexes with the image pixel color difference index and image sharpness index, the feasibility and effectiveness of the proposed method are validated. The experiment results show that the proposed method can achieves an accuracy of over 90% based on the simulated data and transfer kernel learning. The proposed method provides a new improvement strategy for visual roughness measurement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Feijiahao完成签到,获得积分10
刚刚
刚刚
xxxxf发布了新的文献求助10
2秒前
3秒前
XHL发布了新的文献求助10
3秒前
ZHH发布了新的文献求助10
3秒前
jyylrl发布了新的文献求助10
3秒前
愉快若剑发布了新的文献求助10
4秒前
5秒前
魔幻灵竹完成签到,获得积分10
5秒前
5秒前
孤独鹰完成签到,获得积分10
6秒前
完美世界应助明亮的亦绿采纳,获得10
6秒前
lalala应助体贴花卷采纳,获得10
6秒前
sx发布了新的文献求助10
6秒前
7秒前
文艺寄松完成签到,获得积分10
7秒前
7秒前
辛勤的以山完成签到,获得积分10
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
浮游应助科研狗采纳,获得10
10秒前
10秒前
10秒前
Henry完成签到,获得积分10
11秒前
11秒前
快乐太英发布了新的文献求助10
12秒前
句号完成签到 ,获得积分10
12秒前
顾瑶应助冰冰采纳,获得10
12秒前
Soul发布了新的文献求助10
12秒前
你看起来很好吃嘛完成签到 ,获得积分10
13秒前
胖虎发布了新的文献求助10
14秒前
zyc发布了新的文献求助30
14秒前
killua发布了新的文献求助10
14秒前
qqq完成签到,获得积分10
15秒前
jyylrl完成签到,获得积分10
15秒前
你再说一遍完成签到,获得积分10
16秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Efficacy and safety of ciprofol versus propofol in hysteroscopy: a systematic review and meta-analysis 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4830659
求助须知:如何正确求助?哪些是违规求助? 4136127
关于积分的说明 12801594
捐赠科研通 3878426
什么是DOI,文献DOI怎么找? 2133305
邀请新用户注册赠送积分活动 1153495
关于科研通互助平台的介绍 1051823