Predicting Drug Side Effects with Compact Integration of Heterogeneous Networks

副作用(计算机科学) 药品 计算机科学 构造(python库) 随机森林 机器学习 网络模型 异构网络 人工智能 医学 药理学 电信 无线网络 程序设计语言 无线
作者
Xian Zhao,Lei Chen,Zi-Han Guo,Tao Liu
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:14 (8): 709-720 被引量:70
标识
DOI:10.2174/1574893614666190220114644
摘要

Background: The side effects of drugs are not only harmful to humans but also the major reasons for withdrawing approved drugs, bringing greater risks for pharmaceutical companies. However, detecting the side effects for a given drug via traditional experiments is time- consuming and expensive. In recent years, several computational methods have been proposed to predict the side effects of drugs. However, most of the methods cannot effectively integrate the heterogeneous properties of drugs. Methods: In this study, we adopted a network embedding method, Mashup, to extract essential and informative drug features from several drug heterogeneous networks, representing different properties of drugs. For side effects, a network was also built, from where side effect features were extracted. These features can capture essential information about drugs and side effects in a network level. Drug and side effect features were combined together to represent each pair of drug and side effect, which was deemed as a sample in this study. Furthermore, they were fed into a random forest (RF) algorithm to construct the prediction model, called the RF network model. Results: The RF network model was evaluated by several tests. The average of Matthews correlation coefficients on the balanced and unbalanced datasets was 0.640 and 0.641, respectively. Conclusion: The RF network model was superior to the models incorporating other machine learning algorithms and one previous model. Finally, we also investigated the influence of two feature dimension parameters on the RF network model and found that our model was not very sensitive to these parameters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助张宏磊采纳,获得10
刚刚
1秒前
闹闹完成签到,获得积分10
1秒前
1秒前
zz完成签到,获得积分10
2秒前
2秒前
科研通AI6应助Zz采纳,获得10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
朱杰完成签到 ,获得积分10
3秒前
4秒前
4秒前
4秒前
欢呼靳发布了新的文献求助10
5秒前
5秒前
6秒前
hzhang01完成签到,获得积分10
6秒前
6秒前
6秒前
飞龙爵士发布了新的文献求助10
8秒前
8秒前
一路硕博发布了新的文献求助10
8秒前
一路硕博发布了新的文献求助10
8秒前
xiaoyan发布了新的文献求助10
8秒前
生动晟睿完成签到,获得积分10
9秒前
9秒前
完美世界应助lwei采纳,获得10
9秒前
宁灭龙发布了新的文献求助10
9秒前
10秒前
那就来吧发布了新的文献求助10
10秒前
帅气的热狗完成签到,获得积分10
11秒前
小鱼完成签到 ,获得积分20
12秒前
13秒前
13秒前
hzhang01发布了新的文献求助10
14秒前
WYQ完成签到,获得积分10
15秒前
走过的风发布了新的文献求助10
15秒前
qiqizhao完成签到,获得积分10
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Xenolinguistics Towards a Science of Extraterrestrial Language 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5026347
求助须知:如何正确求助?哪些是违规求助? 4262891
关于积分的说明 13287943
捐赠科研通 4070703
什么是DOI,文献DOI怎么找? 2226427
邀请新用户注册赠送积分活动 1234983
关于科研通互助平台的介绍 1158970