Intelligent tutoring systems: a systematic review of characteristics, applications, and evaluation methods

计算机科学 人工智能 领域(数学) 智能教学系统 人机交互 包裹体(矿物) 多媒体 移动电话 机器学习 万维网 数学 电信 性别研究 社会学 纯数学
作者
Elham Mousavinasab,Nahid Zarifsanaiey,Sharareh Rostam Niakan Kalhori,Mahnaz Rakhshan,Leila Keikha,Marjan Ghazi Saeedi
出处
期刊:Interactive Learning Environments [Informa]
卷期号:29 (1): 142-163 被引量:385
标识
DOI:10.1080/10494820.2018.1558257
摘要

With the rapid growth of technology, computer learning has become increasingly integrated with artificial intelligence techniques in order to develop more personalized educational systems. These systems are known as Intelligent Tutoring systems (ITSs). This paper focused on the variant characteristics of ITSs developed across different educational fields. The original studies from 2007 to 2017 were extracted from the PubMed, ProQuest, Scopus, Google scholar, Embase, Cochrane, and Web of Science databases. Finally, 53 papers were included in the study based on inclusion criteria. The educational fields in the ITSs were mainly computer sciences (37.73%). Action-condition rule-based reasoning, data mining, and Bayesian network with 33.96%, 22.64%, and 20.75% frequency respectively, were the most frequent artificial intelligent techniques applied in the ITSs. These techniques enable ITSs to deliver adaptive guidance and instruction, evaluate learners, define and update the learner’s model, and classify or cluster learners. Specifically, the performance of the system, learner’s performance, and experiences were used for evaluation of ITSs. Most ITSs were designed for web user interfaces. Although these systems could facilitate reasoning in the learning process, these systems have rarely been applied in experimental courses including problem-solving, decision-making in physics, chemistry, and clinical fields. Due to the important role of a cell phone in facilitating personalized learning and given the low rate of using mobile-based ITSs, this study has recommended the development and evaluation of mobile-based ITSs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
华仔应助liuyang采纳,获得10
刚刚
刚刚
在水一方应助泽佑采纳,获得10
1秒前
一期一发布了新的文献求助10
3秒前
我不到啊完成签到,获得积分10
4秒前
5秒前
周星星完成签到 ,获得积分10
6秒前
高子懿完成签到,获得积分10
6秒前
6秒前
8秒前
8秒前
多宝鱼发布了新的文献求助10
10秒前
ceeray23应助ilc采纳,获得10
12秒前
12秒前
ddddd发布了新的文献求助10
12秒前
gf发布了新的文献求助10
13秒前
13秒前
高兴的土豆关注了科研通微信公众号
13秒前
红柚完成签到,获得积分10
15秒前
15秒前
顾矜应助dengdeng采纳,获得10
16秒前
华仔应助emile采纳,获得10
19秒前
红柚发布了新的文献求助10
19秒前
娃哈哈完成签到,获得积分10
21秒前
英吉利25发布了新的文献求助10
21秒前
Llllllllily完成签到,获得积分10
23秒前
ZZB完成签到,获得积分10
23秒前
23秒前
动听白秋完成签到 ,获得积分10
24秒前
酷波er应助ilc采纳,获得10
24秒前
刻苦的绿真完成签到 ,获得积分10
27秒前
我测你码发布了新的文献求助10
27秒前
小田田完成签到 ,获得积分10
27秒前
30秒前
31秒前
32秒前
浮游应助婷婷采纳,获得10
33秒前
慕辰完成签到 ,获得积分10
33秒前
34秒前
费宇程完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495384
求助须知:如何正确求助?哪些是违规求助? 4593053
关于积分的说明 14439596
捐赠科研通 4525892
什么是DOI,文献DOI怎么找? 2479779
邀请新用户注册赠送积分活动 1464570
关于科研通互助平台的介绍 1437425