Independent or integrative processing approach of metabolite datasets from different biospecimens potentially affects metabolic pathway recognition in metabolomics

代谢组 代谢物分析 新陈代谢 蛋白质组学 质谱法
作者
Li Zhou,Jin Xu,Shanshan Zhou,He Zhu,Ming Kong,Hong Shen,Ye-Ting Zou,Long-Jie Cong,Jun Xu,Song-Lin Li
出处
期刊:Journal of Chromatography A [Elsevier]
卷期号:1587: 146-154 被引量:5
标识
DOI:10.1016/j.chroma.2018.12.024
摘要

In metabolomics studies, metabolic pathway recognition (MPR) is performed by software tools to screen out the significant pathways disturbed by diseases or reinstated by drugs. To achieve MPR, the significantly changed metabolites determined in different biospecimens (e.g. plasma and urine) are analyzed either independently (metabolites from each biospecimen as a dataset) or integratively (metabolites from all biospecimens as a dataset). However, whether the choice of these two processing approaches affects the results of MPR remains unknown. In this study, this issue was addressed by selecting evaluation of the effects of the herbal medicine Rehmanniae Radix (RR) on anemia and adrenal fatigue by UPLC-QTOF-MS/MS-based metabolomics as an example. The significant pathways disturbed by the modeling of anemia and adrenal fatigue and those reinstated by treatments with raw and processed RR were recognized using MetPA software tool (MetaboAnalyst 3.0), and compared by independent and integrative processing of the significantly changed metabolites determined in plasma and urine. The results showed that the two processing approaches could yield different impact values of pathways and thereby recognize different significant pathways. The differences appear to happen more easily when metabolites from different biospecimens shared the same metabolic pathway. Such pathway could be recognized as a significant pathway by integrative processing but could be excluded by independent processing due to the converged and dispersed importance contributions of the involved metabolites to MPR in the two processing approaches. This issue should concern researchers because MPR is crucial not only to understanding metabolomics data but also to guiding subsequent mechanistic research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
曾经不言发布了新的文献求助10
刚刚
叶子谦发布了新的文献求助10
刚刚
Ava应助王图图采纳,获得20
刚刚
1秒前
Hello应助大酸梅子采纳,获得10
1秒前
1秒前
2秒前
procaine完成签到 ,获得积分20
2秒前
鉴风完成签到,获得积分20
3秒前
3秒前
酷炫忆雪完成签到,获得积分20
4秒前
4秒前
123完成签到 ,获得积分10
4秒前
4秒前
lky发布了新的文献求助10
5秒前
wanci应助默默问晴采纳,获得10
5秒前
lsx发布了新的文献求助10
5秒前
小木同学完成签到,获得积分10
6秒前
标致博完成签到,获得积分10
6秒前
烟花应助sunhao采纳,获得10
6秒前
6秒前
6秒前
优美紫槐发布了新的文献求助10
6秒前
七七完成签到 ,获得积分10
7秒前
Red发布了新的文献求助30
7秒前
gyh发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
鉴风发布了新的文献求助10
8秒前
Triangle1116发布了新的文献求助80
8秒前
9秒前
faustss完成签到,获得积分10
9秒前
9秒前
大模型应助wu采纳,获得10
10秒前
坦率的草丛完成签到,获得积分10
10秒前
77完成签到,获得积分10
10秒前
FashionBoy应助萤火虫采纳,获得10
13秒前
优美紫槐发布了新的文献求助10
13秒前
emnjkl发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5712055
求助须知:如何正确求助?哪些是违规求助? 5207844
关于积分的说明 15266257
捐赠科研通 4864139
什么是DOI,文献DOI怎么找? 2611214
邀请新用户注册赠送积分活动 1561465
关于科研通互助平台的介绍 1518815