Mining Directional Drug Interaction Effects on Myopathy Using the FAERS Database

药物警戒 不良事件报告系统 肌病 计算机科学 数据库 医学 数据挖掘 药品 药理学 内科学
作者
Danai Chasioti,Xiaohui Yao,Pengyue Zhang,Samuel Lerner,Sara K. Quinney,Xia Ning,Lang Li,Li Shen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:23 (5): 2156-2163 被引量:14
标识
DOI:10.1109/jbhi.2018.2874533
摘要

Mining high-order drug-drug interaction (DDI) induced adverse drug effects from electronic health record databases is an emerging area, and very few studies have explored the relationships between high-order drug combinations. We investigate a novel pharmacovigilance problem for mining directional DDI effects on myopathy using the FDA Adverse Event Reporting System (FAERS) database. Our paper provides information on the risk of myopathy associated with adding new drugs on the already prescribed medication, and visualizes the identified directional DDI patterns as user-friendly graphical representation. We utilize the Apriori algorithm to extract frequent drug combinations from the FAERS database. We use odds ratio to estimate the risk of myopathy associated with directional DDI. We create a tree-structured graph to visualize the findings for easy interpretation. Our method confirmed myopathy association with previously reported HMG-CoA reductase inhibitors like rosuvastatin, fluvastatin, simvastatin, and atorvastatin. New, previously unidentified but mechanistically plausible associations with myopathy were also observed, such as the DDI between pamidronate and levofloxacin. Additional top findings are gadolinium-based imaging agents, which however are often used in myopathy diagnosis. Other DDIs with no obvious mechanism are also reported, such as that of sulfamethoxazole with trimethoprim and potassium chloride. This study shows the feasibility to estimate high-order directional DDIs in a fast and accurate manner. The results of the analysis could become a useful tool in the specialists' hands through an easy-to-understand graphic visualization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小海发布了新的文献求助10
刚刚
鹅逗完成签到 ,获得积分10
1秒前
华仔应助望远山采纳,获得10
1秒前
黄黄黄完成签到,获得积分10
1秒前
研友_VZG7GZ应助大壮采纳,获得10
2秒前
琴9完成签到,获得积分10
2秒前
武紫安完成签到,获得积分10
2秒前
高挑的果汁完成签到,获得积分10
2秒前
爆米花应助xiaotan采纳,获得10
2秒前
dfghjkl完成签到 ,获得积分10
2秒前
板栗发布了新的文献求助10
3秒前
3秒前
疯狂的虔发布了新的文献求助10
3秒前
科研通AI5应助飞快的尔芙采纳,获得10
3秒前
4秒前
恍若完成签到,获得积分20
4秒前
Jasper应助彭佳乐采纳,获得10
4秒前
LastXUAN发布了新的文献求助10
4秒前
qpzn完成签到,获得积分10
4秒前
i人完成签到,获得积分10
5秒前
fairyinn完成签到 ,获得积分10
5秒前
5秒前
香蕉觅云应助啊盘采纳,获得10
5秒前
6秒前
yidashi完成签到,获得积分10
6秒前
6秒前
丘比特应助楼松思采纳,获得10
7秒前
搜集达人应助快乐滑板采纳,获得10
7秒前
辛木完成签到 ,获得积分10
7秒前
7秒前
司空老五完成签到,获得积分20
8秒前
科目三应助那年春采纳,获得10
9秒前
9秒前
画清风完成签到,获得积分10
9秒前
KComboN完成签到 ,获得积分10
9秒前
carrier_hc完成签到,获得积分0
10秒前
wanci应助lala采纳,获得10
10秒前
10秒前
LL发布了新的文献求助10
10秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841458
求助须知:如何正确求助?哪些是违规求助? 3383581
关于积分的说明 10530461
捐赠科研通 3103696
什么是DOI,文献DOI怎么找? 1709374
邀请新用户注册赠送积分活动 823157
科研通“疑难数据库(出版商)”最低求助积分说明 773816