A multitask model for person re-identification and attribute recognition using semantic regions

计算机科学 人工智能 卷积神经网络 鉴定(生物学) 背景(考古学) 自然语言处理 模式识别(心理学) 任务(项目管理) 多任务学习 机器学习 判别式 特征(语言学)
作者
Andreas Specker,Arne Schumann,Jürgen Beyerer
标识
DOI:10.1117/12.2573981
摘要

In recent years, more and more video surveillance cameras are being used both in military and civilian applications. This trend results in large amounts of available image and video footage. An effective manual search and evaluation of this data is difficult due to the large data volume and limited human attention span. This is why automatic algorithms are required to aid in data analysis. A key task in this context is search for persons of interest, i.e., person re-identification. Based on a query image, re-identification methods retrieve further occurrences of the depicted person in large data volumes. The prevailing success of convolutional neural networks (CNNs) in computer vision did not spare person re-identification and has recently led to significant improvements. Current state-of-the-art approaches mostly rely on features extracted from CNNs trained with person images and corresponding identity labels. However, person re-identification still remains a challenging problem due to many task-specific influences such as, e.g., occlusions, incomplete body parts, background clutter, varying camera perspectives, and pose variation. Unlike conventional CNN features, descriptive person attributes represent higher-level semantic information that is more robust to many of these influences. Therefore, person re-identification can be improved by integrating attributes into the algorithms. In this work we investigate approaches for attribute-based person re-identification using deep learning methods with the goal of developing efficient models with the best possible re-identification accuracy. We show that best practices in person re-identification approaches can be transferred to the task of pedestrian attribute recognition to achieve strong baseline results for both tasks. Moreover, we show that leveraging information about semantic clothing and body regions during training of the networks improves the results further. Finally, we combine pedestrian attribute recognition and person re-identification models in a multi-task architecture to build our attribute-based person re-identification approach. We develop our attribute model on the large RAP dataset, which currently offers the largest available number of persons and attributes and thus allows for a differentiated analysis. The final combined attribute and re-identification model is trained on the Market-1501 dataset, which provides person identities and attribute annotations simultaneously. Our results show that baseline re-identification results are surpassed, thus indicating that complementary information from the two different tasks is leveraged.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
frank发布了新的文献求助50
1秒前
1秒前
1秒前
1秒前
领导范儿应助一二采纳,获得10
1秒前
科研通AI5应助吱吱采纳,获得10
2秒前
xymm1204发布了新的文献求助10
2秒前
不安新晴发布了新的文献求助10
2秒前
Tom的梦想完成签到,获得积分10
3秒前
Hans完成签到,获得积分10
4秒前
irfanshan应助倪倪采纳,获得10
4秒前
De_Am0ur完成签到,获得积分10
5秒前
NexusExplorer应助戴先森采纳,获得10
5秒前
Tom的梦想发布了新的文献求助10
6秒前
微不足道完成签到,获得积分20
7秒前
chuixing发布了新的文献求助10
7秒前
9秒前
共享精神应助着急的傲菡采纳,获得10
9秒前
塔菲尔完成签到 ,获得积分10
9秒前
Owen应助背水采纳,获得30
10秒前
mnm完成签到,获得积分10
10秒前
弋戈完成签到,获得积分10
10秒前
Strike完成签到,获得积分20
10秒前
孙雯完成签到,获得积分10
10秒前
11秒前
11秒前
科研通AI5应助frank采纳,获得30
11秒前
Wingler发布了新的文献求助10
11秒前
scitiancai完成签到,获得积分10
12秒前
12秒前
12秒前
Wangyn完成签到,获得积分10
12秒前
hanzhipad举报加油呀求助涉嫌违规
13秒前
科研通AI5应助不安新晴采纳,获得10
13秒前
xymm1204完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
Strike发布了新的文献求助30
15秒前
慕青应助嘟嘟雯采纳,获得10
15秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3821362
求助须知:如何正确求助?哪些是违规求助? 3364017
关于积分的说明 10427134
捐赠科研通 3082551
什么是DOI,文献DOI怎么找? 1695723
邀请新用户注册赠送积分活动 815232
科研通“疑难数据库(出版商)”最低求助积分说明 769050