Randomized SMILES strings improve the quality of molecular generative models

计算机科学 质量(理念) 生成语法 随机对照试验 情报检索 数据挖掘 数据科学 人工智能 医学 认识论 哲学 外科
作者
Josep Arús‐Pous,Simon Johansson,Oleksii Prykhodko,Esben Jannik Bjerrum,Christian Tyrchan,Jean‐Louis Reymond,Hongming Chen,Ola Engkvist
出处
期刊:Journal of Cheminformatics [BioMed Central]
卷期号:11 (1) 被引量:297
标识
DOI:10.1186/s13321-019-0393-0
摘要

Recurrent Neural Networks (RNNs) trained with a set of molecules represented as unique (canonical) SMILES strings, have shown the capacity to create large chemical spaces of valid and meaningful structures. Herein we perform an extensive benchmark on models trained with subsets of GDB-13 of different sizes (1 million, 10,000 and 1000), with different SMILES variants (canonical, randomized and DeepSMILES), with two different recurrent cell types (LSTM and GRU) and with different hyperparameter combinations. To guide the benchmarks new metrics were developed that define how well a model has generalized the training set. The generated chemical space is evaluated with respect to its uniformity, closedness and completeness. Results show that models that use LSTM cells trained with 1 million randomized SMILES, a non-unique molecular string representation, are able to generalize to larger chemical spaces than the other approaches and they represent more accurately the target chemical space. Specifically, a model was trained with randomized SMILES that was able to generate almost all molecules from GDB-13 with a quasi-uniform probability. Models trained with smaller samples show an even bigger improvement when trained with randomized SMILES models. Additionally, models were trained on molecules obtained from ChEMBL and illustrate again that training with randomized SMILES lead to models having a better representation of the drug-like chemical space. Namely, the model trained with randomized SMILES was able to generate at least double the amount of unique molecules with the same distribution of properties comparing to one trained with canonical SMILES.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
宝福X暴富完成签到,获得积分10
4秒前
Hh完成签到 ,获得积分10
4秒前
5秒前
皮老八完成签到 ,获得积分10
8秒前
江夏完成签到 ,获得积分10
9秒前
9秒前
12秒前
研友_LwXJgn发布了新的文献求助10
12秒前
滴滴滴完成签到,获得积分10
12秒前
俭朴的听寒完成签到,获得积分10
12秒前
走啊走啊走完成签到,获得积分10
13秒前
13秒前
香蕉觅云应助外向钢铁侠采纳,获得10
14秒前
卡卡完成签到,获得积分10
15秒前
博修发布了新的文献求助30
15秒前
16秒前
滴滴滴发布了新的文献求助10
17秒前
玉于成完成签到,获得积分10
17秒前
科研通AI2S应助别骂小喷菇采纳,获得10
18秒前
思源应助1huiqina采纳,获得10
18秒前
英姑应助坚强的严青采纳,获得10
18秒前
务实青筠发布了新的文献求助10
19秒前
Ayu完成签到,获得积分10
20秒前
研友_LwXJgn完成签到,获得积分10
21秒前
Eric完成签到,获得积分10
22秒前
111完成签到 ,获得积分10
23秒前
24秒前
24秒前
26秒前
一只羊完成签到,获得积分10
27秒前
27秒前
共享精神应助博修采纳,获得10
28秒前
称心凡柔完成签到,获得积分10
29秒前
Qo日不落o永霞完成签到,获得积分10
30秒前
1huiqina发布了新的文献求助10
30秒前
30秒前
32秒前
CodeCraft应助一只羊采纳,获得10
32秒前
可爱玫瑰完成签到,获得积分10
33秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799078
求助须知:如何正确求助?哪些是违规求助? 3344805
关于积分的说明 10321507
捐赠科研通 3061233
什么是DOI,文献DOI怎么找? 1680100
邀请新用户注册赠送积分活动 806899
科研通“疑难数据库(出版商)”最低求助积分说明 763445