Excursion detection and root-cause analysis using virtual overlay metrology

覆盖 计量学 计算机科学 薄脆饼 平版印刷术 可靠性(半导体) 可靠性工程 半导体器件制造 过程(计算) 制作 根本原因 工程类 材料科学 电气工程 程序设计语言 数学 功率(物理) 替代医学 病理 物理 操作系统 统计 医学 量子力学 光电子学
作者
Leon van Dijk,Kedir M. Adal,Mathias Chastan,Auguste Lam,Richard van Haren
出处
期刊:Metrology, Inspection, and Process Control for Semiconductor Manufacturing XXXV 被引量:3
标识
DOI:10.1117/12.2581561
摘要

Overlay is one of the most critical parameters in Integrated Circuit (IC) fabrication as it is a measure for how accurate patterned features are positioned with respect to previously patterned features. Without good overlay, electrical contacts between features will be poor and there can be shorts or opens. Minimizing overlay errors during IC manufacturing is therefore crucial for ensuring high yield and that the performance and reliability specifications of the eventual device are met. For that reason, metrology plays a crucial role in IC fabrication for monitoring the overlay performance and process control. However, due to its high capital equipment cost and impact on cycle time, it is practically impossible to measure every single wafer and/or lot. This means that some excursions cannot be captured and that process drifts might not be detectable in an early phase. Virtual metrology (VM) addresses these challenges as it aims at utilizing the significant amounts of data that are generated during manufacturing by the lithography clusters and other processing equipment, for constructing mathematical and statistical models that predict wafer properties like overlay. In this way, overlay excursions and process drifts can be detected without actually measuring the overlay of these wafers. Preferably, VM is also able to link these excursions and drifts to particular root causes, enabling operators to take preventive measures timely. In this work, we develop virtual overlay metrology for a series of implant layers using a combination of physical and machine learning models. The implant layers relate to ion implantation steps following the Shallow-Trench-Isolation (STI) creation, and both the implant and STI layers are exposed using multiple lithography scanners. A physical model is used to address overlay contributors that can be derived directly from available data. Machine learning algorithms, which are able to learn models from data that can provide predictions for similar, unseen data, are used to predict contributions from less obvious sources of overlay errors. The capability of the overlay prediction model is evaluated on production data. A prediction performance of ~0.7 is achieved in terms of the R-squared statistic and the VM is able to follow variations in the implant-layer overlay and to detect excursions. The excursions can originate from correctable as well as from non-correctable overlay errors. We will show that the interpretability of the prediction model allows us to identify the root cause for the high correctable error variation in the implant-layer overlay. Furthermore, overlay contributors will be identified that may not have a direct impact on the less critical overlay of implant layers. However, they may contribute significantly to the Gate-to-STI overlay as well, and we will show the potential of virtual overlay metrology for downstream layer excursion detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
樊珩发布了新的文献求助10
1秒前
巧克力素完成签到 ,获得积分10
1秒前
wh完成签到,获得积分10
1秒前
3秒前
3秒前
田様应助登山人采纳,获得10
4秒前
chinh完成签到,获得积分10
5秒前
失眠醉易应助HEAUBOOK采纳,获得10
6秒前
李健的小迷弟应助HEAUBOOK采纳,获得30
6秒前
失眠醉易应助HEAUBOOK采纳,获得10
6秒前
6秒前
在水一方应助HEAUBOOK采纳,获得30
6秒前
万能图书馆应助HEAUBOOK采纳,获得10
6秒前
reflux应助HEAUBOOK采纳,获得30
6秒前
万能图书馆应助HEAUBOOK采纳,获得30
6秒前
思源应助HEAUBOOK采纳,获得30
6秒前
彭于晏应助HEAUBOOK采纳,获得30
6秒前
reflux应助HEAUBOOK采纳,获得30
6秒前
7秒前
科研通AI5应助HX采纳,获得10
8秒前
genova完成签到,获得积分10
8秒前
赫连紫发布了新的文献求助10
9秒前
10秒前
Puddingo完成签到,获得积分10
12秒前
xiaoxiao发布了新的文献求助10
13秒前
小储应助HEAUBOOK采纳,获得10
14秒前
失眠醉易应助HEAUBOOK采纳,获得10
14秒前
Lucas应助HEAUBOOK采纳,获得10
14秒前
17秒前
Narcissus完成签到,获得积分10
19秒前
22秒前
登山人发布了新的文献求助10
22秒前
长歌完成签到,获得积分10
23秒前
什么什么东西完成签到,获得积分10
25秒前
25秒前
27秒前
xxxxxxlp完成签到,获得积分10
28秒前
欣喜沛芹完成签到,获得积分10
29秒前
淡定的夏青完成签到,获得积分10
29秒前
笨笨完成签到,获得积分10
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789463
求助须知:如何正确求助?哪些是违规求助? 3334462
关于积分的说明 10270181
捐赠科研通 3050926
什么是DOI,文献DOI怎么找? 1674234
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742