已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine-learning–based knowledge discovery in rheumatoid arthritis–related registry data to identify predictors of persistent pain

医学 分类 机器学习 类风湿性关节炎 疾病 物理疗法 人工智能 内科学 计算机科学
作者
Jörn Lötsch,Lars Alfredsson,Jon Lampa
出处
期刊:Pain [Lippincott Williams & Wilkins]
卷期号:161 (1): 114-126 被引量:27
标识
DOI:10.1097/j.pain.0000000000001693
摘要

Abstract Early detection of patients with chronic diseases at risk of developing persistent pain is clinically desirable for timely initiation of multimodal therapies. Quality follow-up registries may provide the necessary clinical data; however, their design is not focused on a specific research aim, which poses challenges on the data analysis strategy. Here, machine-learning was used to identify early parameters that provide information about a future development of persistent pain in rheumatoid arthritis (RA). Data of 288 patients were queried from a registry based on the Swedish Epidemiological Investigation of RA. Unsupervised data analyses identified the following 3 distinct patient subgroups: low-, median-, and high-persistent pain intensity. Next, supervised machine-learning, implemented as random forests followed by computed ABC analysis–based item categorization, was used to select predictive parameters among 21 different demographic, patient-rated, and objective clinical factors. The selected parameters were used to train machine-learned algorithms to assign patients pain-related subgroups (1000 random resamplings, 2/3 training, and 1/3 test data). Algorithms trained with 3-month data of the patient global assessment and health assessment questionnaire provided pain group assignment at a balanced accuracy of 70%. When restricting the predictors to objective clinical parameters of disease severity, swollen joint count and tender joint count acquired at 3 months provided a balanced accuracy of RA of 59%. Results indicate that machine-learning is suited to extract knowledge from data queried from pain- and disease-related registries. Early functional parameters of RA are informative for the development and degree of persistent pain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
CodeCraft应助云栈出谷采纳,获得10
5秒前
西北完成签到,获得积分10
6秒前
10秒前
研友_nq2QpZ发布了新的文献求助10
10秒前
11秒前
李伊发布了新的文献求助10
15秒前
17秒前
研友_nq2QpZ完成签到,获得积分10
17秒前
Lyl完成签到 ,获得积分10
19秒前
ktw完成签到,获得积分10
20秒前
20秒前
Demi_Ming完成签到,获得积分10
22秒前
小马甲应助李伊采纳,获得30
22秒前
云栈出谷发布了新的文献求助10
23秒前
23秒前
23秒前
欢喜的毛豆完成签到,获得积分10
27秒前
花花应助吃掉记忆面包采纳,获得10
27秒前
蒲云海发布了新的文献求助10
28秒前
28秒前
29秒前
Otter完成签到,获得积分0
31秒前
羽生结弦的馨馨完成签到,获得积分10
33秒前
lalala完成签到 ,获得积分10
33秒前
阔达栾发布了新的文献求助10
34秒前
琉璃苣发布了新的文献求助30
35秒前
48秒前
琉璃苣完成签到,获得积分20
49秒前
落尘府完成签到 ,获得积分10
53秒前
科研通AI5应助blue2021采纳,获得30
54秒前
蒲云海发布了新的文献求助30
55秒前
qilingYin发布了新的文献求助30
55秒前
夯大力完成签到,获得积分20
1分钟前
阔达栾完成签到,获得积分10
1分钟前
JamesPei应助Sci采纳,获得10
1分钟前
六氟合铂酸氙完成签到 ,获得积分10
1分钟前
dlfg发布了新的文献求助10
1分钟前
称心如意完成签到 ,获得积分10
1分钟前
soren发布了新的文献求助10
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
Logical form: From GB to Minimalism 500
The Geometry of the Moiré Effect in One, Two, and Three Dimensions 500
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4183846
求助须知:如何正确求助?哪些是违规求助? 3719695
关于积分的说明 11723269
捐赠科研通 3398725
什么是DOI,文献DOI怎么找? 1864862
邀请新用户注册赠送积分活动 922439
科研通“疑难数据库(出版商)”最低求助积分说明 834054