电解质
阳极
材料科学
电极
腐蚀
枝晶(数学)
纳米技术
金属
储能
电偶阳极
阴极保护
化学工程
锌
冶金
化学
工程类
量子力学
物理
物理化学
功率(物理)
数学
几何学
标识
DOI:10.1016/j.elecom.2020.106898
摘要
Zn metal batteries are promising for large-scale energy storage systems because of their extremely intrinsic safety and low cost. However, parasitic side reactions such as hydrogen evolution, Zn corrosion, and flourished dendrite growth behavior impede their practical implementation. Notably, electrode/electrolyte interface plays a critical role in regulating Zn deposition and improving the cyclic lifespan of rechargeable Zn metal batteries. Here, the fundamentals of Zn electrode/electrolyte interface and the related issues are discussed. Thereafter, competent strategies including artificial protective layers, electrolyte optimization, structural engineering to fulfill a stable working Zn metal anode are presented. Subsequently, progressive characterization techniques reveal interfacial chemistries and morphological evolution of Zn metal anodes are outlined. Finally, the significantly perspective to guide and promote the developed of Zn batteries are proposed. This review will serve to further advance the development of interfacial engineering for Zn metal anodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI