已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Breast calcification detection based on multichannel radiofrequency signals via a unified deep learning framework

光谱图 计算机科学 人工智能 深度学习 卷积神经网络 模式识别(心理学) 频域 散斑噪声 语音识别 计算机视觉 斑点图案
作者
Menyun Qiao,Zhou Fang,Yi Guo,Shichong Zhou,Cai Chang,Yuanyuan Wang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:168: 114218-114218 被引量:8
标识
DOI:10.1016/j.eswa.2020.114218
摘要

Breast calcifications in radiographic images suggest a high likelihood of breast lesion malignancy. However, it is difficult to detect calcifications in traditional B-mode ultrasound images due to resolution limits and speckle noise. In this paper, we propose a unified deep learning framework for automatic calcification detection based on multichannel ultrasound radio frequency (RF) signals. First, beamforming is used during preprocessing to merge and blend multichannel signals into one-channel RF signals. Each scan line is converted into a spectrogram by the short-time Fourier transform (STFT) to utilize the frequency domain characteristics. Then, an improved fully convolutional neural network called the RF signal Spectrogram-Calcification-Detection-Net (SCD-Net) is proposed to detect calcifications from spectrograms. This method employs a deep learning architecture based on YOLOv3 and combines features via convolutional long short-term memory (ConvLSTM). Next, a Kalman filter for tracking calcifications between consecutive spectrograms based on SCD-Net detection results is applied since the spatial coherence of calcifications in neighboring frames can be taken into account. Finally, the detected calcification is mapped from the time domain of spectrograms to B-mode images for clinical diagnosis. Experiments were conducted on a database of 337 experienced doctor-marked breast tumors with calcifications. Compared to the state-of-the-art methods for detecting calcifications, the proposed method achieved an average precision (AP) of 88.25%, an accuracy of 84% and an F1 score of 91%. The experimental results demonstrate that the unified framework has great performance for tumor calcification detection. The system can be effectively applied in a portable ultrasound instrument to accurately help radiologists and provide guidance for breast tumor diagnosis. This implies that the proposed approach can be implemented in real practice for analyzing breast RF signals, which have many useful medical applications in clinical breast tumor diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenyu发布了新的文献求助20
1秒前
wippe发布了新的文献求助10
1秒前
2秒前
dfggg发布了新的文献求助10
2秒前
2秒前
烟花应助lesley采纳,获得10
2秒前
suiii完成签到,获得积分10
3秒前
wsgdhz发布了新的文献求助10
5秒前
Ss完成签到,获得积分10
5秒前
6秒前
momo完成签到,获得积分10
6秒前
科西西完成签到,获得积分10
6秒前
ponymjj应助dfggg采纳,获得10
7秒前
裘佳怡发布了新的文献求助10
9秒前
彭于晏应助淼淼嘉嘉采纳,获得10
9秒前
12秒前
李健应助SCI采纳,获得10
12秒前
大模型应助萝卜采纳,获得10
15秒前
Lee完成签到,获得积分10
15秒前
黎乐荷发布了新的文献求助10
16秒前
烟花应助HopeStar采纳,获得10
17秒前
玻尿酸发布了新的文献求助10
17秒前
17秒前
17秒前
yeyuchenfeng发布了新的文献求助10
18秒前
伶俐天蓉发布了新的文献求助10
19秒前
加菲丰丰应助LL采纳,获得10
19秒前
李爱国应助栗子采纳,获得10
20秒前
CodeCraft应助自然水杯采纳,获得10
21秒前
kento发布了新的文献求助100
21秒前
吃鸡蛋不吃黄完成签到,获得积分10
21秒前
顾矜应助科研工头采纳,获得10
22秒前
Joy发布了新的文献求助30
22秒前
汪宇发布了新的文献求助10
22秒前
李李李发布了新的文献求助10
23秒前
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
nbnbaaa发布了新的文献求助10
28秒前
30秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787891
求助须知:如何正确求助?哪些是违规求助? 3333523
关于积分的说明 10262165
捐赠科研通 3049324
什么是DOI,文献DOI怎么找? 1673496
邀请新用户注册赠送积分活动 802002
科研通“疑难数据库(出版商)”最低求助积分说明 760458