灵敏度(控制系统)
趋化性
数学
医学
内科学
工程类
电子工程
受体
出处
期刊:Cornell University - arXiv
日期:2020-01-01
被引量:1
标识
DOI:10.48550/arxiv.2003.03016
摘要
In this paper, we study the parabolic-elliptic Keller-Segel system with singular sensitivity and logistic-type source: $ u_t=Δu-χ\nabla\cdot(\frac{u}{v}\nabla v)+ru-μu^k$, $0=Δv-v+u$ under the non-flux boundary conditions in a smooth bounded convex domain $Ω\subset\mathbb{R}^n$, $χ,r,μ>0$, $k>1$ and $n\ge 2$. It is shown that the system possesses a globally bounded classical solution if $k>\frac{3n-2}{n}$, and $r>\frac{χ^2}{4}$ for $0 χ-1$ for $χ>2$. In addition, under the same condition for $r,χ$, the system admits a global generalized solution when $k\in(2-\frac{1}{n},\frac{3n-2}{n}]$, moreover this global generalized solution should be globally bounded provided $\frac{r}μ$ and the initial data $u_0$ suitably small.
科研通智能强力驱动
Strongly Powered by AbleSci AI