亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Systematic Modeling of log D7.4 Based on Ensemble Machine Learning, Group Contribution, and Matched Molecular Pair Analysis

适用范围 数量结构-活动关系 计算机科学 人工智能 分子描述符 稳健性(进化) 特征选择 机器学习 数学 化学 生物化学 基因
作者
Li Fu,Lu Liu,Zhijiang Yang,Pan Li,Junjie Ding,Yong‐Huan Yun,Aiping Lü,Tingjun Hou,Dongsheng Cao
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:60 (1): 63-76 被引量:46
标识
DOI:10.1021/acs.jcim.9b00718
摘要

Lipophilicity, as evaluated by the n-octanol/buffer solution distribution coefficient at pH = 7.4 (log D7.4), is a major determinant of various absorption, distribution, metabolism, elimination, and toxicology (ADMET) parameters of drug candidates. In this study, we developed several quantitative structure–property relationship (QSPR) models to predict log D7.4 based on a large and structurally diverse data set. Eight popular machine learning algorithms were employed to build the prediction models with 43 molecular descriptors selected by a wrapper feature selection method. The results demonstrated that XGBoost yielded better prediction performance than any other single model (RT2 = 0.906 and RMSET = 0.395). Moreover, the consensus model from the top three models could continue to improve the prediction performance (RT2 = 0.922 and RMSET = 0.359). The robustness, reliability, and generalization ability of the models were strictly evaluated by the Y-randomization test and applicability domain analysis. Moreover, the group contribution model based on 110 atom types and the local models for different ionization states were also established and compared to the global models. The results demonstrated that the descriptor-based consensus model is superior to the group contribution method, and the local models have no advantage over the global models. Finally, matched molecular pair (MMP) analysis and descriptor importance analysis were performed to extract transformation rules and give some explanations related to log D7.4. In conclusion, we believe that the consensus model developed in this study can be used as a reliable and promising tool to evaluate log D7.4 in drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自然乘云关注了科研通微信公众号
15秒前
鬼见愁应助科研通管家采纳,获得100
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
潘1发布了新的文献求助10
1分钟前
可可完成签到 ,获得积分10
1分钟前
mark163完成签到,获得积分10
2分钟前
k001boyxw完成签到,获得积分10
2分钟前
超男完成签到 ,获得积分10
2分钟前
腼腆的馒头完成签到,获得积分10
2分钟前
大模型应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
Jasper应助科研通管家采纳,获得10
2分钟前
潘1发布了新的文献求助10
2分钟前
仔wang完成签到,获得积分10
2分钟前
Mr.Sui完成签到,获得积分10
3分钟前
可爱的函函应助潘1采纳,获得10
3分钟前
3分钟前
潘1发布了新的文献求助10
3分钟前
MGraceLi_sci完成签到,获得积分10
4分钟前
朱佳宁完成签到 ,获得积分10
5分钟前
5分钟前
慕青应助诺一44采纳,获得10
6分钟前
6分钟前
诺一44发布了新的文献求助10
6分钟前
7分钟前
8分钟前
8分钟前
8分钟前
Boren完成签到,获得积分10
9分钟前
嘟嘟嘟嘟完成签到 ,获得积分10
9分钟前
桐桐应助阁主采纳,获得10
9分钟前
lovelife完成签到,获得积分10
11分钟前
大个应助mewharper采纳,获得30
11分钟前
11分钟前
mewharper发布了新的文献求助30
11分钟前
搜集达人应助Earn采纳,获得10
11分钟前
科研通AI2S应助科研通管家采纳,获得10
12分钟前
科研通AI5应助科研通管家采纳,获得10
12分钟前
mark163发布了新的文献求助10
12分钟前
mewharper完成签到,获得积分10
12分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
MRI Parameters and Positioning 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
A Student's Guide to Developmental Psychology 600
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4155949
求助须知:如何正确求助?哪些是违规求助? 3691707
关于积分的说明 11658867
捐赠科研通 3383124
什么是DOI,文献DOI怎么找? 1856339
邀请新用户注册赠送积分活动 917809
科研通“疑难数据库(出版商)”最低求助积分说明 831154