亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Histologic subtype classification of non-small cell lung cancer using PET/CT images

医学 核医学 放射科 正电子发射断层摄影术 PET-CT 肺癌 内科学 病理
作者
Yong Han,Yuan Ma,Zhiyuan Wu,Feng Zhang,Deqiang Zheng,Xiangtong Liu,Lixin Tao,Zhigang Liang,Zhi Yang,Xia Li,Jian Huang,Xiuhua Guo
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:48 (2): 350-360 被引量:172
标识
DOI:10.1007/s00259-020-04771-5
摘要

To evaluate the capability of PET/CT images for differentiating the histologic subtypes of non-small cell lung cancer (NSCLC) and to identify the optimal model from radiomics-based machine learning/deep learning algorithms. In this study, 867 patients with adenocarcinoma (ADC) and 552 patients with squamous cell carcinoma (SCC) were retrospectively analysed. A stratified random sample of 283 patients (20%) was used as the testing set (173 ADC and 110 SCC); the remaining data were used as the training set. A total of 688 features were extracted from each outlined tumour region. Ten feature selection techniques, ten machine learning (ML) models and the VGG16 deep learning (DL) algorithm were evaluated to construct an optimal classification model for the differential diagnosis of ADC and SCC. Tenfold cross-validation and grid search technique were employed to evaluate and optimize the model hyperparameters on the training dataset. The area under the receiver operating characteristic curve (AUROC), accuracy, precision, sensitivity and specificity was used to evaluate the performance of the models on the test dataset. Fifty top-ranked subset features were selected by each feature selection technique for classification. The linear discriminant analysis (LDA) (AUROC, 0.863; accuracy, 0.794) and support vector machine (SVM) (AUROC, 0.863; accuracy, 0.792) classifiers, both of which coupled with the l2,1NR feature selection method, achieved optimal performance. The random forest (RF) classifier (AUROC, 0.824; accuracy, 0.775) and l2,1NR feature selection method (AUROC, 0.815; accuracy, 0.764) showed excellent average performance among the classifiers and feature selection methods employed in our study, respectively. Furthermore, the VGG16 DL algorithm (AUROC, 0.903; accuracy, 0.841) outperformed all conventional machine learning methods in combination with radiomics. Employing radiomic machine learning/deep learning algorithms could help radiologists to differentiate the histologic subtypes of NSCLC via PET/CT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
脑洞疼应助满意的草莓采纳,获得10
15秒前
zozox完成签到 ,获得积分10
52秒前
59秒前
1分钟前
1分钟前
1分钟前
科目三应助尊敬唇膏采纳,获得30
1分钟前
1分钟前
1分钟前
1分钟前
包容仙人掌完成签到,获得积分10
1分钟前
葵花籽发布了新的文献求助10
1分钟前
tszjw168完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助150
2分钟前
2分钟前
浮游应助大方的百川采纳,获得10
2分钟前
自信的凝天完成签到,获得积分10
2分钟前
伏城完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
LY完成签到,获得积分10
3分钟前
4分钟前
尊敬唇膏发布了新的文献求助30
4分钟前
4分钟前
MchemG应助科研通管家采纳,获得10
4分钟前
科目三应助科研通管家采纳,获得150
4分钟前
彩虹儿应助科研通管家采纳,获得150
4分钟前
LY发布了新的文献求助10
4分钟前
4分钟前
科研通AI5应助sgyhbxf25采纳,获得10
4分钟前
sgyhbxf25完成签到,获得积分10
4分钟前
5分钟前
wop111应助IrG采纳,获得10
5分钟前
5分钟前
5分钟前
彩虹儿应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4858649
求助须知:如何正确求助?哪些是违规求助? 4154296
关于积分的说明 12874475
捐赠科研通 3904827
什么是DOI,文献DOI怎么找? 2145440
邀请新用户注册赠送积分活动 1164550
关于科研通互助平台的介绍 1065977