石墨氮化碳
氮化碳
催化作用
化学
多相催化
绿色化学
光催化
氮化物
有机催化
纳米技术
有机化学
碳纤维
材料科学
反应机理
对映选择合成
复合材料
复合数
图层(电子)
作者
Yong Wang,Xinchen Wang,Markus Antonietti
标识
DOI:10.1002/anie.201101182
摘要
Polymeric graphitic carbon nitride materials (for simplicity: g-C(3)N(4)) have attracted much attention in recent years because of their similarity to graphene. They are composed of C, N, and some minor H content only. In contrast to graphenes, g-C(3)N(4) is a medium-bandgap semiconductor and in that role an effective photocatalyst and chemical catalyst for a broad variety of reactions. In this Review, we describe the "polymer chemistry" of this structure, how band positions and bandgap can be varied by doping and copolymerization, and how the organic solid can be textured to make it an effective heterogenous catalyst. g-C(3)N(4) and its modifications have a high thermal and chemical stability and can catalyze a number of "dream reactions", such as photochemical splitting of water, mild and selective oxidation reactions, and--as a coactive catalytic support--superactive hydrogenation reactions. As carbon nitride is metal-free as such, it also tolerates functional groups and is therefore suited for multipurpose applications in biomass conversion and sustainable chemistry.
科研通智能强力驱动
Strongly Powered by AbleSci AI