花青素
平衡
辐照
化学
氢
生物物理学
生物
细胞生物学
生物化学
食品科学
物理
有机化学
核物理学
作者
Nana Su,Qi Wu,Yuanyuan Liu,Jiangtao Cai,Wenbiao Shen,Kai Xia,Jin Cui
摘要
The aims of the study were to investigate whether hydrogen gas (H2) was involved in regulation of anthocyanin biosynthesis in two contrasting radish (Raphanus sativus L.) varieties (low [LA] and high [HA] level of anthocyanin) under UV irradiation. The results showed that hydrogen-rich water (HRW) significantly blocked the UV-A-induced increase of H2O2 and O2(•-) accumulation, and enhanced the UV-A-induced increase of superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities in LA and HA. Furthermore, UV-A-induced increase of anthocyanin and total phenols was further enhanced only in HA sprouts cotreated with HRW. LC-MS/MS analysis showed that five anthocyanidins existed in HA sprouts, but only two in LA sprouts. Meanwhile, the cyanidin was the most abundant anthocyanidin in HA, and the cyanidin was 2-fold higher cotreated with HRW than UV-A. Molecular analyses showed that the anthocyanin biosynthesis-related genes were upregulated significantly in both HA (in particular) and LA sprouts treated with HRW plus UV-A. These data imply that HRW reestablishes reactive oxygen species homeostasis in both LA and HA, but exerts different effects on anthocyanin accumulation between them under UV-A.
科研通智能强力驱动
Strongly Powered by AbleSci AI