压缩传感
基础(线性代数)
计算机科学
贝叶斯概率
迭代重建
算法
人工智能
数学
几何学
作者
Amit Ashok,Mark A. Neifeld
标识
DOI:10.1364/cosi.2011.cma3
摘要
We describe a compressive imager that adapts the measurement basis based on past measurements within a sequential Bayesian estimation framework. Simulation study shows a 7% improvement in reconstruction performance compared to a static measurement basis.
科研通智能强力驱动
Strongly Powered by AbleSci AI