Using data mining to model and interpret soil diffuse reflectance spectra

阿卡克信息准则 均方误差 特征选择 偏最小二乘回归 支持向量机 随机森林 数学 多元自适应回归样条 可解释性 人工智能 统计 模式识别(心理学) 人工神经网络 特征(语言学) 小波 回归分析 计算机科学 贝叶斯多元线性回归 语言学 哲学
作者
Raphael A. Viscarra Rossel,Thorsten Behrens
出处
期刊:Geoderma [Elsevier BV]
卷期号:158 (1-2): 46-54 被引量:875
标识
DOI:10.1016/j.geoderma.2009.12.025
摘要

The aims of this paper are: to compare different data mining algorithms for modelling soil visible–near infrared (vis–NIR: 350–2500 nm) diffuse reflectance spectra and to assess the interpretability of the results. We compared multiple linear regression (MLR), partial least squares regression (PLSR), multivariate adaptive regression splines (MARS), support vector machines (SVM), random forests (RF), boosted trees (BT) and artificial neural networks (ANN) to estimate soil organic carbon (SOC), clay content (CC) and pH measured in water (pH). The comparisons were also performed using a selected set of wavelet coefficients from a discrete wavelet transform (DWT). Feature selection techniques to reduce model complexity and to interpret and evaluate the models were tested. The dataset consists of 1104 samples from Australia. Comparisons were made in terms of the root mean square error (RMSE), the corresponding R2 and the Akaike Information Criterion (AIC). Ten-fold-leave-group out cross validation was used to optimise and validate the models. Predictions of the three soil properties by SVM using all vis–NIR wavelengths produced the smallest RMSE values, followed by MARS and PLSR. RF and especially BT were out-performed by all other approaches. For all techniques, implementing them on a reduced number of wavelet coefficients, between 72 and 137 coefficients, produced better results. Feature selection (FS) using the variable importance for projection (FSVIP) returned 29–31 selected features, while FSMARS returned between 11 and 14 features. DWT–ANN produced the smallest RMSE of all techniques tested followed by FSVIP–ANN and FSMARS–ANN. However, both the FSVIP–ANN and FSMARS–ANN models used a smaller number of features for the predictions than DWT–ANN. This is reflected in their AIC, which suggests that, when both the accuracy and parsimony of the model are taken into consideration, the best SOC model was the FSMARS–ANN, and the best CC and pH models were those from FSVIP–ANN. Analysis of the selected bands shows that: (i) SOC is related to wavelengths indicating C―O, C═O, and N―H compounds, (ii) CC is related to wavelengths indicating minerals, and (iii) pH is related to wavelengths indicating both minerals and organic material. Thus, the results are sensible and can be used for comparison to other soils. A systematic comparison like the one presented here is important as the nature of the target function has a strong influence on the performance of the different algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘泉龙发布了新的文献求助10
1秒前
热情的土豆完成签到 ,获得积分10
1秒前
GD发布了新的文献求助10
1秒前
思源应助Hang采纳,获得10
1秒前
1秒前
加勒比海带丝应助Maestro_S采纳,获得10
1秒前
李爱国应助Darsine采纳,获得10
1秒前
rain发布了新的文献求助10
2秒前
zwk发布了新的文献求助50
2秒前
Dr_思念发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
传奇3应助chemier027采纳,获得10
3秒前
泡泡给泡泡的求助进行了留言
4秒前
蒸馏水发布了新的文献求助20
4秒前
爱笑的蘑菇完成签到,获得积分10
4秒前
4秒前
amanda应助yyds采纳,获得20
4秒前
lenetivy发布了新的文献求助10
4秒前
坚定晓兰发布了新的文献求助10
5秒前
29发布了新的文献求助10
5秒前
wxyshare应助guchenniub采纳,获得10
5秒前
小小发布了新的文献求助10
5秒前
刘栋发布了新的文献求助10
5秒前
5秒前
5秒前
clivia完成签到,获得积分10
5秒前
小鱼头完成签到,获得积分10
6秒前
6秒前
6秒前
猪猪hero应助浑续采纳,获得10
7秒前
7秒前
7秒前
复杂的可冥完成签到,获得积分20
7秒前
在木星完成签到,获得积分20
8秒前
Aiden发布了新的文献求助10
8秒前
梦里花落声应助双下巴采纳,获得10
8秒前
jackZ应助羽婕采纳,获得10
8秒前
花灯王子发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261106
求助须知:如何正确求助?哪些是违规求助? 4422247
关于积分的说明 13765679
捐赠科研通 4296652
什么是DOI,文献DOI怎么找? 2357478
邀请新用户注册赠送积分活动 1353844
关于科研通互助平台的介绍 1315035