已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Lightweight tomato real-time detection method based on improved YOLO and mobile deployment

帧速率 卷积神经网络 计算机科学 修剪 图形处理单元 实时计算 失败 算法 人工智能 并行计算 农学 生物
作者
Taiheng Zeng,Siyi Li,Qiming Song,Fenglin Zhong,Xuan Wei
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:205: 107625-107625 被引量:142
标识
DOI:10.1016/j.compag.2023.107625
摘要

The current deep-learning-based tomato target detection algorithm has many parameters; it has drawbacks of large computation, long time consumption, and reliance on high-computing-power devices such as graphics processing units (GPU). In this study, we propose a lightweight improved YOLOv5 (You Only Look Once) based algorithm to achieve real-time localization and ripeness detection of tomato fruits. Initially, this algorithm used a down-sampling convolutional layer instead of the original focus layer, reconstructing the backbone network of YOLOv5 using the bneck module of MobileNetV3. Then, it performs channel pruning for the neck layer to further reduce the model size and uses a genetic algorithm for hyperparameter optimization to improve detection accuracy. We evaluate the improved algorithm using a homemade tomato dataset. The experimental results demonstrated that the improved model number of parameters and floating point operations per second (FLOPs) were compressed by 78% and 84.15% compared to the original YOLOv5s, while the mAP reached 0.969. Meanwhile, the detection speed on the central processing unit (CPU) platform was 42.5 ms, which was 64.88% better. This study further utilized the Nihui convolutional neural network (NCNN) framework to quantize the improved model and developed an Android-based real-time tomato monitoring application (app). Experimental results demonstrated that the 16-bit quantized model achieved an average detection frame rate of 26.5 frames per second (fps) on the mobile side with lower arithmetic power, which was 268% better than the original YOLOv5s, and the model size was reduced by 51.1% while achieving a 93% true detection rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿凯发布了新的文献求助10
刚刚
1秒前
1秒前
3秒前
5秒前
5秒前
端庄的石头完成签到 ,获得积分10
8秒前
搜集达人应助西奥采纳,获得10
8秒前
mz完成签到 ,获得积分10
10秒前
神勇的半莲完成签到,获得积分10
11秒前
倾城发布了新的文献求助10
13秒前
猪猪hero应助科研通管家采纳,获得10
14秒前
wanci应助科研通管家采纳,获得10
14秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
所所应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
赘婿应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
不配.应助科研通管家采纳,获得100
15秒前
李健应助科研通管家采纳,获得10
15秒前
嘘_应助科研通管家采纳,获得10
15秒前
上官若男应助科研通管家采纳,获得50
15秒前
猪猪hero应助科研通管家采纳,获得10
15秒前
科研通AI5应助小趴蔡采纳,获得100
16秒前
17秒前
20秒前
dada发布了新的文献求助10
21秒前
又听风雨发布了新的文献求助10
21秒前
yyy关注了科研通微信公众号
22秒前
23秒前
24秒前
dengdengdeng发布了新的文献求助10
24秒前
小刚大王完成签到,获得积分10
25秒前
27秒前
27秒前
El发布了新的文献求助10
29秒前
29秒前
33秒前
33秒前
科研通AI5应助小趴蔡采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4850864
求助须知:如何正确求助?哪些是违规求助? 4149880
关于积分的说明 12855861
捐赠科研通 3897534
什么是DOI,文献DOI怎么找? 2142184
邀请新用户注册赠送积分活动 1161848
关于科研通互助平台的介绍 1061745