Lightweight tomato real-time detection method based on improved YOLO and mobile deployment

帧速率 卷积神经网络 计算机科学 修剪 图形处理单元 实时计算 失败 算法 人工智能 并行计算 农学 生物
作者
Taiheng Zeng,Siyi Li,Qiming Song,Fenglin Zhong,Xuan Wei
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:205: 107625-107625 被引量:99
标识
DOI:10.1016/j.compag.2023.107625
摘要

The current deep-learning-based tomato target detection algorithm has many parameters; it has drawbacks of large computation, long time consumption, and reliance on high-computing-power devices such as graphics processing units (GPU). In this study, we propose a lightweight improved YOLOv5 (You Only Look Once) based algorithm to achieve real-time localization and ripeness detection of tomato fruits. Initially, this algorithm used a down-sampling convolutional layer instead of the original focus layer, reconstructing the backbone network of YOLOv5 using the bneck module of MobileNetV3. Then, it performs channel pruning for the neck layer to further reduce the model size and uses a genetic algorithm for hyperparameter optimization to improve detection accuracy. We evaluate the improved algorithm using a homemade tomato dataset. The experimental results demonstrated that the improved model number of parameters and floating point operations per second (FLOPs) were compressed by 78% and 84.15% compared to the original YOLOv5s, while the mAP reached 0.969. Meanwhile, the detection speed on the central processing unit (CPU) platform was 42.5 ms, which was 64.88% better. This study further utilized the Nihui convolutional neural network (NCNN) framework to quantize the improved model and developed an Android-based real-time tomato monitoring application (app). Experimental results demonstrated that the 16-bit quantized model achieved an average detection frame rate of 26.5 frames per second (fps) on the mobile side with lower arithmetic power, which was 268% better than the original YOLOv5s, and the model size was reduced by 51.1% while achieving a 93% true detection rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aqaqaqa完成签到,获得积分10
刚刚
1秒前
Orange应助咚巴拉采纳,获得10
2秒前
alick完成签到,获得积分10
2秒前
SYLH应助cldg采纳,获得10
3秒前
爆米花应助cc采纳,获得10
3秒前
4秒前
4秒前
完美世界应助小瓶子采纳,获得10
4秒前
klyre完成签到,获得积分20
4秒前
仇湘完成签到,获得积分10
4秒前
5秒前
芒果完成签到,获得积分10
6秒前
李健应助开朗的寻桃采纳,获得10
6秒前
七叶完成签到,获得积分10
7秒前
Almo完成签到,获得积分10
7秒前
7秒前
大大彬发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
9秒前
9秒前
YCG发布了新的文献求助10
10秒前
甜心糖完成签到 ,获得积分10
10秒前
鱼鱼发布了新的文献求助10
11秒前
LEOKIM发布了新的文献求助10
11秒前
飞太难发布了新的文献求助10
11秒前
12秒前
quanbin发布了新的文献求助10
12秒前
王小丫完成签到 ,获得积分10
12秒前
13秒前
Sunday完成签到,获得积分10
13秒前
哭泣的映寒完成签到 ,获得积分10
14秒前
14秒前
14秒前
cc完成签到,获得积分10
14秒前
全名发布了新的文献求助10
14秒前
14秒前
15秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820576
求助须知:如何正确求助?哪些是违规求助? 3363504
关于积分的说明 10422977
捐赠科研通 3081912
什么是DOI,文献DOI怎么找? 1695276
邀请新用户注册赠送积分活动 815042
科研通“疑难数据库(出版商)”最低求助积分说明 768819