Semantic segmentation of agricultural images: A survey

人工智能 分割 计算机科学 深度学习 图像分割 机器学习 稳健性(进化) 图像处理 模式识别(心理学) 图像(数学) 生物化学 基因 化学
作者
Zifei Luo,Wenzhu Yang,Yunfeng Yuan,Ruru Gou,Xiaonan Li
出处
期刊:Information Processing in Agriculture [Elsevier BV]
卷期号:11 (2): 172-186 被引量:107
标识
DOI:10.1016/j.inpa.2023.02.001
摘要

As an important research topic in recent years, semantic segmentation has been widely applied to image understanding problems in various fields. With the successful application of deep learning methods in machine vision, the superior performance has been transferred to agricultural image processing by combining them with traditional methods. Semantic segmentation methods have revolutionized the development of agricultural automation and are commonly used for crop cover and type analysis, pest and disease identification, etc. We first give a review of the recent advances in traditional and deep learning methods for semantic segmentation of agricultural images according to different segmentation principles. Then we introduce the traditional methods that can effectively utilize the original image information and the powerful performance of deep learning-based methods. Finally, we outline their applications in agricultural image segmentation. In our literature, we identify the challenges in agricultural image segmentation and summarize the innovative developments that address these challenges. The robustness of the existing segmentation methods for processing complex images still needs to be improved urgently, and their generalization abilities are also insufficient. In particular, the limited number of labeled samples is a roadblock to new developed deep learning methods for their training and evaluation. To this, segmentation methods that augment the dataset or incorporate multimodal information enable deep learning methods to further improve the segmentation capabilities. This review provides a reference for the application of image semantic segmentation in the field of agricultural informatization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
某某发布了新的文献求助10
2秒前
Zzzz1发布了新的文献求助10
2秒前
2秒前
春夏爱科研完成签到,获得积分10
3秒前
无名发布了新的文献求助10
3秒前
青柠味薯片完成签到,获得积分10
5秒前
风清月莹完成签到 ,获得积分10
6秒前
anny2022发布了新的文献求助30
6秒前
量子星尘发布了新的文献求助50
6秒前
taoyiyan完成签到,获得积分10
7秒前
8秒前
北陆玄枵完成签到,获得积分10
8秒前
刘嘉欣完成签到,获得积分10
8秒前
思源应助zoeydonut采纳,获得20
8秒前
彭于晏应助小趴菜采纳,获得10
9秒前
Nix完成签到,获得积分10
9秒前
9秒前
烟花应助ACE采纳,获得10
10秒前
爆米花应助proton采纳,获得10
10秒前
13秒前
老小孩完成签到 ,获得积分10
13秒前
raffia发布了新的文献求助10
14秒前
permanent完成签到,获得积分10
14秒前
Hhhhhhhh完成签到 ,获得积分10
14秒前
王可爱完成签到,获得积分10
16秒前
17秒前
疯子不会学完成签到,获得积分10
17秒前
朱奇凡完成签到,获得积分10
17秒前
lkla发布了新的文献求助10
17秒前
Sicecream完成签到,获得积分10
17秒前
FSR完成签到 ,获得积分10
17秒前
图图完成签到 ,获得积分10
18秒前
无情听南完成签到,获得积分10
18秒前
zj3tears发布了新的文献求助10
19秒前
Zzzz1完成签到,获得积分10
19秒前
SSS完成签到,获得积分10
20秒前
20秒前
挤爆沙丁鱼完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5082510
求助须知:如何正确求助?哪些是违规求助? 4299889
关于积分的说明 13397348
捐赠科研通 4123694
什么是DOI,文献DOI怎么找? 2258552
邀请新用户注册赠送积分活动 1262835
关于科研通互助平台的介绍 1196778