Intraoperative AI‐assisted early prediction of parathyroid and ischemia alert in endoscopic thyroid surgery

甲状旁腺 队列 医学 缺血 甲状腺 甲状腺切除术 外科 内科学 人工智能 泌尿科 甲状旁腺激素 计算机科学
作者
Bo Wang,Jia‐Fan Yu,Si‐Ying Lin,Yijian Li,Wen‐Yu Huang,Shouyi Yan,Sisi Wang,Liyong Zhang,Shao‐Jun Cai,Si‐Bin Wu,Meng‐Yao Li,Tingyi Wang,Amr H. Abdelhamid Ahmed,Gregory W. Randolph,Fei Chen,Wenxin Zhao
出处
期刊:Head & neck [Wiley]
卷期号:46 (8): 1975-1987 被引量:6
标识
DOI:10.1002/hed.27629
摘要

Abstract Background The preservation of parathyroid glands is crucial in endoscopic thyroid surgery to prevent hypocalcemia and related complications. However, current methods for identifying and protecting these glands have limitations. We propose a novel technique that has the potential to improve the safety and efficacy of endoscopic thyroid surgery. Purpose Our study aims to develop a deep learning model called PTAIR 2.0 (Parathyroid gland Artificial Intelligence Recognition) to enhance parathyroid gland recognition during endoscopic thyroidectomy. We compare its performance against traditional surgeon‐based identification methods. Materials and methods Parathyroid tissues were annotated in 32 428 images extracted from 838 endoscopic thyroidectomy videos, forming the internal training cohort. An external validation cohort comprised 54 full‐length videos. Six candidate algorithms were evaluated to select the optimal one. We assessed the model's performance in terms of initial recognition time, identification duration, and recognition rate and compared it with the performance of surgeons. Results Utilizing the YOLOX algorithm, we developed PTAIR 2.0, which demonstrated superior performance with an AP50 score of 92.1%. The YOLOX algorithm achieved a frame rate of 25.14 Hz, meeting real‐time requirements. In the internal training cohort, PTAIR 2.0 achieved AP50 values of 94.1%, 98.9%, and 92.1% for parathyroid gland early prediction, identification, and ischemia alert, respectively. Additionally, in the external validation cohort, PTAIR outperformed both junior and senior surgeons in identifying and tracking parathyroid glands ( p < 0.001). Conclusion The AI‐driven PTAIR 2.0 model significantly outperforms both senior and junior surgeons in parathyroid gland identification and ischemia alert during endoscopic thyroid surgery, offering potential for enhanced surgical precision and patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助现代子默采纳,获得10
刚刚
想疯完成签到,获得积分20
刚刚
思源应助FORREST1993采纳,获得10
2秒前
hou1995完成签到 ,获得积分10
2秒前
3秒前
zimu012完成签到,获得积分10
3秒前
小赖不赖完成签到 ,获得积分10
3秒前
QI完成签到,获得积分10
4秒前
Xiaoguo发布了新的文献求助10
5秒前
笑羽完成签到,获得积分0
6秒前
hello11完成签到,获得积分10
6秒前
氿369完成签到 ,获得积分10
7秒前
7秒前
无花果应助dd采纳,获得10
9秒前
图苏发布了新的文献求助100
9秒前
12秒前
芋芋发布了新的文献求助10
12秒前
Li完成签到,获得积分10
16秒前
bkagyin应助nanana采纳,获得10
17秒前
niu发布了新的文献求助10
19秒前
25关注了科研通微信公众号
20秒前
21秒前
李爱国应助福宝采纳,获得10
21秒前
22秒前
善学以致用应助小无采纳,获得10
25秒前
NexusExplorer应助Xiaoguo采纳,获得10
25秒前
li发布了新的文献求助10
27秒前
27秒前
dd发布了新的文献求助10
27秒前
共享精神应助旺仔牛奶糖采纳,获得10
28秒前
xiha西希完成签到,获得积分10
28秒前
Y柒完成签到,获得积分10
29秒前
CodeCraft应助科研通管家采纳,获得10
30秒前
上官若男应助科研通管家采纳,获得10
30秒前
Orange应助科研通管家采纳,获得10
30秒前
嘎发完成签到,获得积分10
31秒前
nozero应助楼如凡采纳,获得200
34秒前
34秒前
34秒前
25发布了新的文献求助30
36秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785864
求助须知:如何正确求助?哪些是违规求助? 3331212
关于积分的说明 10250565
捐赠科研通 3046660
什么是DOI,文献DOI怎么找? 1672149
邀请新用户注册赠送积分活动 801039
科研通“疑难数据库(出版商)”最低求助积分说明 759979