Multi-node knowledge graph assisted distributed fault detection for large-scale industrial processes based on graph attention network and bidirectional LSTMs

计算机科学 图形 故障检测与隔离 数据挖掘 过程(计算) 人工智能 模式识别(心理学) 理论计算机科学 操作系统 执行机构
作者
Qing Li,Yangfan Wang,Jie Dong,Chi Zhang,Kaixiang Peng
出处
期刊:Neural Networks [Elsevier BV]
卷期号:173: 106210-106210 被引量:6
标识
DOI:10.1016/j.neunet.2024.106210
摘要

Modern industrial processes are characterized by extensive, multiple operation units, and strong coupled correlation of subsystems. Fault detection of large-scale processes is still a challenging problem, especially for tandem plant-wide processes in multiple fields such as water treatment process. In this paper, a novel distributed graph attention network-bidirectional long short-term memory (D-GATBLSTM) fault detection model is proposed for large-scale industrial processes. Firstly, a multi-node knowledge graph (MNKG) is constructed using a joint data and knowledge driven strategy. Secondly, for large-scale industrial process, a global feature extractor of graph attention networks (GATs) is constructed, on the basis of which, sub-blocks are decomposed based on MNKG. Then, local feature extractors of bidirectional long short-term memory (Bi-LSTM) for each sub-block are constructed, in which correlations among multiple sub-blocks are considered. Finally, a multi-subblock fusion collaborative prediction model is constructed and the comprehensive fault detection results are given by the grid search method. The effectiveness of our D-GATBLSTM is exemplified in a secure water treatment process case, where it outperforms baseline models compared, with 27% improvement in precision, 15% increase in recall, and overall F-score enhancement of 0.22.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
ccc关闭了ccc文献求助
刚刚
科研通AI5应助锅锅采纳,获得10
1秒前
1秒前
1秒前
peanut完成签到,获得积分10
2秒前
Jenny完成签到,获得积分10
2秒前
111关注了科研通微信公众号
2秒前
3秒前
3秒前
丹汶亦发布了新的文献求助10
3秒前
奇奇完成签到,获得积分10
4秒前
5秒前
Kins发布了新的文献求助10
5秒前
叶子小丙完成签到,获得积分10
6秒前
醉熏的绝音完成签到,获得积分10
6秒前
帆楼完成签到,获得积分10
6秒前
学术交流111完成签到,获得积分10
7秒前
哈牛发布了新的文献求助10
7秒前
清新的寄风完成签到 ,获得积分10
7秒前
柴柴子完成签到 ,获得积分10
7秒前
香蕉觅云应助zcc111采纳,获得10
8秒前
在水一方应助泡面采纳,获得10
8秒前
9秒前
jyyg完成签到,获得积分10
9秒前
陈哈哈完成签到,获得积分10
9秒前
归尘发布了新的文献求助10
10秒前
zimo应助redamancy采纳,获得10
10秒前
10秒前
奇奇发布了新的文献求助10
11秒前
11秒前
微笑寒安完成签到 ,获得积分10
11秒前
玉潇完成签到,获得积分10
11秒前
叶子小丙发布了新的文献求助10
12秒前
徐老师完成签到 ,获得积分10
12秒前
12秒前
桐桐应助XF多年以后采纳,获得10
12秒前
easterway完成签到,获得积分10
13秒前
luha完成签到,获得积分10
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
System of systems: When services and products become indistinguishable 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813166
求助须知:如何正确求助?哪些是违规求助? 3357670
关于积分的说明 10387663
捐赠科研通 3074873
什么是DOI,文献DOI怎么找? 1689037
邀请新用户注册赠送积分活动 812539
科研通“疑难数据库(出版商)”最低求助积分说明 767144