Seven Bit Nonvolatile Electrically Programmable Photonics Based on Phase-Change Materials for Image Recognition

光子学 计算机科学 材料科学 神经形态工程学 计算机数据存储 光电子学 光开关 电子工程 人工神经网络 计算机硬件 人工智能 工程类
作者
Jian Xia,Tianci Wang,Zixuan Wang,Junjie Gong,Yunxiao Dong,Rui Yang,Xiangshui Miao
出处
期刊:ACS Photonics [American Chemical Society]
卷期号:11 (2): 723-730 被引量:23
标识
DOI:10.1021/acsphotonics.3c01598
摘要

With the rapid development of the Internet of Things, how to efficiently store, transmit, and process massive amounts of data has become a major challenge now. Optical neural networks based on nonvolatile phase change materials (PCMs) have become a breakthrough point due to their zero static power consumption, low thermal crosstalk, large-scale, and high efficiency. However, current photonic devices cannot meet the multilevel requirements in neuromorphic computing due to their limited storage capacity. Here, a new way for increasing storage capacity is paved from the perspective of modulation of the crystallization kinetics of PCMs. A more progressive transition from the amorphous to the crystalline states is achieved through the grain-refinement phenomenon induced by nitrogen (N) element doping in Ge2Sb2Te5 (GST), giving precise access to more multibit states. By integrating N-doped Ge2Sb2Te5 (N-GST) with a waveguide, a high-capacity nonvolatile photonic device enabling over 7 bits (∼222 levels) storage is achieved for the first time. The storage capacity is increased nearly by 7 times compared to the state-of-the-art device (∼32 levels). An optical convolutional neural network is successfully established for the MINIST handwritten digit recognition task by mapping synapse weight to the multiple optical levels, and a recognition accuracy of up to 96.5% is achieved. Our work provides a new strategy for the development of integrated photonic devices with multilevel and demonstrates enormous application potential in the field of large-scale photonic neural networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怡然的复天完成签到,获得积分10
1秒前
田様应助张zhang采纳,获得10
2秒前
Ava应助zlh采纳,获得10
3秒前
jc哥发布了新的文献求助10
5秒前
5秒前
二世小卒完成签到 ,获得积分0
6秒前
guanxiaofei完成签到,获得积分10
7秒前
7秒前
zero完成签到,获得积分10
9秒前
yfy_fairy完成签到,获得积分10
12秒前
大鹅发布了新的文献求助10
13秒前
忆雪完成签到,获得积分10
13秒前
14秒前
guanxiaofei发布了新的文献求助10
18秒前
整齐便当发布了新的文献求助10
19秒前
xiaosu完成签到,获得积分10
21秒前
Yx发布了新的文献求助10
22秒前
Akim应助阳光采纳,获得10
23秒前
大鹅完成签到,获得积分10
23秒前
24秒前
李演员完成签到,获得积分10
25秒前
Mm发布了新的文献求助10
25秒前
26秒前
yznfly应助YXH采纳,获得50
27秒前
风中琦完成签到 ,获得积分10
27秒前
echo发布了新的文献求助10
31秒前
xinghui应助欢呼的镜子采纳,获得10
31秒前
31秒前
zsy发布了新的文献求助10
35秒前
35秒前
39秒前
40秒前
li发布了新的文献求助30
41秒前
小马甲应助zbl1314zbl采纳,获得10
43秒前
CYH完成签到,获得积分10
44秒前
绵绵球发布了新的文献求助30
45秒前
Banana完成签到,获得积分10
47秒前
Halo完成签到 ,获得积分10
48秒前
49秒前
缓慢的含海完成签到,获得积分10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560221
求助须知:如何正确求助?哪些是违规求助? 4645390
关于积分的说明 14675061
捐赠科研通 4586534
什么是DOI,文献DOI怎么找? 2516468
邀请新用户注册赠送积分活动 1490087
关于科研通互助平台的介绍 1460900