Using HS-GC-MS and flash GC e-nose in combination with chemometric analysis and machine learning algorithms to identify the varieties, geographical origins and production modes of Atractylodes lancea

算法 气相色谱-质谱法 电子鼻 闪光灯(摄影) 生产(经济) 人工智能 计算机科学 模式识别(心理学) 机器学习 质谱法 化学 色谱法 物理 光学 经济 宏观经济学
作者
Yifu Gan,Tao Yang,Wei Gu,Lanping Guo,Rongli Qiu,Sheng Wang,Yan Zhang,Min Tang,Zengcai Yang
出处
期刊:Industrial Crops and Products [Elsevier]
卷期号:209: 117955-117955 被引量:19
标识
DOI:10.1016/j.indcrop.2023.117955
摘要

Atractylodes lancea (AL) is argued to be the best botanical source of the atractylodes rhizome (AR), which is used within traditional Chinese medicine. However, in recent years there have been a number of issues around the production and use of AR, including authenticity, confusion, and mislabeling between AL and Atractylodes chinensis (AC) isolates, geographical origins, and production modes. These discrepancies can impact both the quality and commercial value of the crop. In this study, volatile organic compounds from 173 batches of AR isolated from both AL and AC plants were compared using a flash gas chromatography electronic nose (flash GC e-nose) and headspace gas chromatography–mass spectrometry (HS-GC-MS). The flash GC e-nose revealed that the main aromas of AR were spicy, sweety, and fruity, and the flavor differences of Atractylodes lancea from different geographical origins are mainly reflected in sweetness and spicy taste. Furthermore, HS-GC-MS showed that terpenoids are key indicators for determining the quality and further clarifying the origin of AL. Eight terpenoids including 2-pinen-10-ol and β-elemene were higher in abundance in AL than AC; seven terpenoids including α-curcumene and α-pinene were higher in abundance in wild AL than cultivated AL; and there were significantly different quantities of ten terpenoids including agarospirol and β-bisabolene present in samples of AL taken from Jiangsu, Henan and Hubei provinces. Finally, the performance of eight machine-learning algorithms to distinguish between AL and AC, and recognize different regions and production patterns of AL, were compared. Among them, XGBoost had the highest differentiation accuracy of 86.17 ± 7.48%. This study provides a rapid and accurate strategy for addressing quality control and market regulation issues for AL and other industrial crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ikaros完成签到,获得积分10
1秒前
JING完成签到,获得积分10
1秒前
冰阔罗完成签到,获得积分10
1秒前
MCst完成签到,获得积分20
1秒前
2秒前
充电宝应助huliang采纳,获得30
3秒前
key完成签到,获得积分10
3秒前
Huobol完成签到,获得积分10
3秒前
3秒前
心信鑫发布了新的文献求助10
4秒前
leena发布了新的文献求助10
4秒前
四季安完成签到 ,获得积分10
4秒前
5秒前
cjdsb发布了新的文献求助10
5秒前
车厘子发布了新的文献求助10
6秒前
无极微光应助学不完了采纳,获得20
7秒前
重重发布了新的文献求助10
7秒前
7秒前
Owen应助dalibaba采纳,获得10
7秒前
啥东西啥完成签到,获得积分10
7秒前
xxiaobai发布了新的文献求助10
7秒前
今后应助32采纳,获得30
8秒前
忧虑的慕山完成签到,获得积分10
9秒前
10秒前
仲夏发布了新的文献求助10
10秒前
过云雨发布了新的文献求助20
10秒前
11秒前
NIHAO完成签到 ,获得积分10
12秒前
13秒前
温儒儒完成签到,获得积分10
13秒前
14秒前
x123发布了新的文献求助10
15秒前
15秒前
杭苑博发布了新的文献求助10
15秒前
慕青应助dalibaba采纳,获得10
15秒前
如许发布了新的文献求助10
16秒前
露亮完成签到,获得积分10
17秒前
tupee完成签到,获得积分10
17秒前
666发布了新的文献求助10
19秒前
研友_VZG7GZ应助心信鑫采纳,获得30
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
The Antibodies, Vol. 2,3,4,5,6 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461138
求助须知:如何正确求助?哪些是违规求助? 4566175
关于积分的说明 14303831
捐赠科研通 4491884
什么是DOI,文献DOI怎么找? 2460490
邀请新用户注册赠送积分活动 1449811
关于科研通互助平台的介绍 1425582