Using HS-GC-MS and flash GC e-nose in combination with chemometric analysis and machine learning algorithms to identify the varieties, geographical origins and production modes of Atractylodes lancea

算法 气相色谱-质谱法 电子鼻 闪光灯(摄影) 生产(经济) 人工智能 计算机科学 模式识别(心理学) 机器学习 质谱法 化学 色谱法 物理 光学 经济 宏观经济学
作者
Yifu Gan,Tao Yang,Wei Gu,Lanping Guo,Rongli Qiu,Sheng Wang,Yan Zhang,Min Tang,Zengcai Yang
出处
期刊:Industrial Crops and Products [Elsevier BV]
卷期号:209: 117955-117955 被引量:10
标识
DOI:10.1016/j.indcrop.2023.117955
摘要

Atractylodes lancea (AL) is argued to be the best botanical source of the atractylodes rhizome (AR), which is used within traditional Chinese medicine. However, in recent years there have been a number of issues around the production and use of AR, including authenticity, confusion, and mislabeling between AL and Atractylodes chinensis (AC) isolates, geographical origins, and production modes. These discrepancies can impact both the quality and commercial value of the crop. In this study, volatile organic compounds from 173 batches of AR isolated from both AL and AC plants were compared using a flash gas chromatography electronic nose (flash GC e-nose) and headspace gas chromatography–mass spectrometry (HS-GC-MS). The flash GC e-nose revealed that the main aromas of AR were spicy, sweety, and fruity, and the flavor differences of Atractylodes lancea from different geographical origins are mainly reflected in sweetness and spicy taste. Furthermore, HS-GC-MS showed that terpenoids are key indicators for determining the quality and further clarifying the origin of AL. Eight terpenoids including 2-pinen-10-ol and β-elemene were higher in abundance in AL than AC; seven terpenoids including α-curcumene and α-pinene were higher in abundance in wild AL than cultivated AL; and there were significantly different quantities of ten terpenoids including agarospirol and β-bisabolene present in samples of AL taken from Jiangsu, Henan and Hubei provinces. Finally, the performance of eight machine-learning algorithms to distinguish between AL and AC, and recognize different regions and production patterns of AL, were compared. Among them, XGBoost had the highest differentiation accuracy of 86.17 ± 7.48%. This study provides a rapid and accurate strategy for addressing quality control and market regulation issues for AL and other industrial crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
4秒前
Anxin完成签到,获得积分10
4秒前
5秒前
5秒前
阿米巴ing发布了新的文献求助10
6秒前
思源应助空瓶氧气采纳,获得10
6秒前
猫大熊发布了新的文献求助10
6秒前
努力的学发布了新的文献求助10
6秒前
SunnyZjw完成签到,获得积分10
7秒前
dz完成签到,获得积分20
7秒前
8秒前
杰仔完成签到,获得积分10
8秒前
lxcy0612发布了新的文献求助10
8秒前
万能图书馆应助zzl采纳,获得30
8秒前
慕青应助酆不二采纳,获得10
10秒前
10秒前
田忌赛马发布了新的文献求助10
11秒前
11秒前
猫大熊完成签到,获得积分10
11秒前
12秒前
14秒前
上章发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
林好人完成签到 ,获得积分10
17秒前
17秒前
隐形曼青应助Han采纳,获得10
18秒前
强健的电话完成签到,获得积分10
19秒前
deng发布了新的文献求助10
21秒前
ccm应助博修采纳,获得10
23秒前
mltyyds完成签到,获得积分10
24秒前
qwert发布了新的文献求助10
24秒前
科研力力完成签到,获得积分10
24秒前
25秒前
不安青牛应助何所似采纳,获得10
26秒前
27秒前
mengzhe完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4277925
求助须知:如何正确求助?哪些是违规求助? 3806447
关于积分的说明 11926310
捐赠科研通 3453318
什么是DOI,文献DOI怎么找? 1893962
邀请新用户注册赠送积分活动 943829
科研通“疑难数据库(出版商)”最低求助积分说明 847673