清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Molecular Typing Method for Invasive Breast Cancer by Serum Raman Spectroscopy

乳腺癌 医学 免疫组织化学 活检 打字 病理 癌症 内科学 病态的 肿瘤科 语音识别 计算机科学
作者
Jun Jiang,Lintao Li,Gang Yin,Huaichao Luo,Junjie Li
出处
期刊:Clinical Breast Cancer [Elsevier]
卷期号:24 (4): 376-383 被引量:3
标识
DOI:10.1016/j.clbc.2024.02.008
摘要

Abstract

Micro abstract

The IHC approach to molecular typing of breast cancer pathology is invasive and time-consuming. Raman spectroscopy was used to obtain serum spectra of 459 breast cancer patients in this study, and with the assistance of classification models established by SVM, a new method for rapid and accurate acquisition of molecular typing was achieved.

Background

The incidence of breast cancer ranks highest among cancers and is exceedingly heterogeneous. Immunohistochemical staining is commonly used clinically to identify the molecular subtype for subsequent treatment and prognosis.

Purpose

Raman spectroscopy and Support Vector Machine (SVM) learning algorithm were utilized to identify blood samples from breast cancer patients in order to investigate a novel molecular typing approach.

Method

Tumor tissue coarse needle aspiration biopsy samples, and peripheral venous blood samples were gathered from 459 invasive breast cancer patients admitted to the breast department of Sichuan Cancer Hospital between June 2021 and September 2022. Immunohistochemical staining and in situ hybridization were performed on the coarse needle aspiration biopsy tissues to obtain their molecular typing pathological labels, including: 70 cases of Luminal A, 167 cases of Luminal B (HER2-positive), 57 cases of Luminal B (HER2-negative), 84 cases of HER2-positive, and 81 cases of triple-negative. Blood samples were processed to obtained Raman spectra taken for SVM classification models establishment with machine algorithms (using 80% of the sample data as the training set), and then the performance of the SVM classification models was evaluated by the independent validation set (20% of the sample data).

Results

The AUC values of SVM classification models remained above 0.85, demonstrating outstanding model performance and excellent subtype discrimination of breast cancer molecular subtypes.

Conclusion

Raman spectroscopy of serum samples can promptly and precisely detect the molecular subtype of invasive breast cancer, which has the potential for clinical value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毛毛弟完成签到 ,获得积分10
1秒前
雪飞杨完成签到 ,获得积分10
3秒前
在水一方应助科研通管家采纳,获得10
8秒前
阿尼完成签到 ,获得积分10
11秒前
22秒前
点点完成签到 ,获得积分10
23秒前
S.S.N完成签到 ,获得积分10
24秒前
佳期如梦完成签到 ,获得积分10
28秒前
28秒前
NexusExplorer应助初久采纳,获得10
29秒前
even完成签到 ,获得积分0
34秒前
火星上的寻凝完成签到,获得积分10
40秒前
41秒前
46秒前
赵李锋完成签到,获得积分10
51秒前
复杂的可乐完成签到 ,获得积分10
53秒前
蓝意完成签到,获得积分0
58秒前
1分钟前
起司猫完成签到 ,获得积分10
1分钟前
小路发布了新的文献求助10
1分钟前
yx发布了新的文献求助10
1分钟前
zhuosht完成签到 ,获得积分10
1分钟前
xiaozou55完成签到 ,获得积分10
1分钟前
cwanglh完成签到 ,获得积分10
1分钟前
独白完成签到 ,获得积分10
1分钟前
Brenda完成签到,获得积分10
1分钟前
kkscanl完成签到 ,获得积分10
1分钟前
yx完成签到,获得积分10
1分钟前
AUGKING27完成签到 ,获得积分10
1分钟前
余慵慵完成签到 ,获得积分10
1分钟前
helen李完成签到 ,获得积分10
1分钟前
hy1234完成签到 ,获得积分10
1分钟前
lyj完成签到 ,获得积分0
1分钟前
amen完成签到 ,获得积分10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
huanghe完成签到,获得积分10
2分钟前
秋山河完成签到 ,获得积分10
2分钟前
乐观的星月完成签到 ,获得积分10
2分钟前
1234完成签到 ,获得积分10
2分钟前
Ziqingserra完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426818
求助须知:如何正确求助?哪些是违规求助? 4540422
关于积分的说明 14172176
捐赠科研通 4458324
什么是DOI,文献DOI怎么找? 2444953
邀请新用户注册赠送积分活动 1435976
关于科研通互助平台的介绍 1413486