Multi-objective deep reinforcement learning approach for adaptive traffic signal control system with concurrent optimization of safety, efficiency, and decarbonization at intersections

强化学习 交叉口(航空) 还原(数学) 交通信号灯 方案(数学) 工程类 控制(管理) 信号定时 运输工程 信号(编程语言) 计算机科学 人工智能 实时计算 数学 数学分析 程序设计语言 几何学
作者
Gongquan Zhang,Fangrong Chang,Jieling Jin,Fan Yang,Helai Huang
出处
期刊:Accident Analysis & Prevention [Elsevier BV]
卷期号:199: 107451-107451 被引量:24
标识
DOI:10.1016/j.aap.2023.107451
摘要

This study introduces a novel approach to adaptive traffic signal control (ATSC) by leveraging multi-objective deep reinforcement learning (DRL) techniques. The proposed scheme aims to optimize control strategies at intersections while concurrently addressing the objectives of safety, efficiency, and decarbonization. Traditional ATSC schemes primarily emphasize traffic efficiency and often lack the ability to adapt to real-time dynamic traffic conditions. To overcome these limitations, the study proposes a DRL-based ATSC algorithm that integrates the Dueling Double Deep Q Network (D3QN) framework. The performance of the proposed algorithm is evaluated through a simulated intersection in Changsha, China. Specifically, the proposed ATSC algorithm outperforms both traditional ATSC and ATSC with efficiency optimization only algorithms by achieving more than a 16% reduction in traffic conflicts and a 4% reduction in carbon emissions. In terms of traffic efficiency, waiting time reduces by 18% compared to traditional ATSC, but slightly increases (0.64%) compared to DRL-based ATSC algorithm that integrates D3QN framework. This small increase indicates a trade-off between efficiency and other objectives such as safety and decarbonization. Moreover, the proposed scheme demonstrates superior performance specifically in highly traffic-demand scenarios in terms of all three objectives. The findings of this study contribute to the advancement of traffic control systems by providing a practical and effective solution for optimizing signal control strategies in real-world traffic scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助孟meng采纳,获得10
1秒前
1秒前
拙青完成签到,获得积分10
1秒前
明亮娩发布了新的文献求助10
1秒前
oMayii发布了新的文献求助10
3秒前
快乐的元霜完成签到,获得积分10
4秒前
呆一起完成签到,获得积分10
4秒前
石破天惊完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
盛施霏完成签到,获得积分10
6秒前
卡乐瑞咩吹可完成签到,获得积分10
6秒前
无语的麦片完成签到 ,获得积分10
6秒前
Ningxin完成签到,获得积分10
7秒前
成就钧完成签到,获得积分10
7秒前
chen发布了新的文献求助10
8秒前
平平无奇种花小天才完成签到,获得积分10
8秒前
一一完成签到,获得积分10
8秒前
bnvgx发布了新的文献求助10
9秒前
zylt50完成签到,获得积分10
9秒前
wanting发布了新的文献求助10
9秒前
orangelion完成签到,获得积分10
9秒前
落后的夜阑完成签到,获得积分10
9秒前
9秒前
翁雁丝完成签到 ,获得积分10
10秒前
自律的晏子完成签到 ,获得积分10
10秒前
10秒前
李希有发布了新的文献求助10
10秒前
李爱国应助sanyecai采纳,获得10
11秒前
kaka1981sdu完成签到,获得积分10
11秒前
贺兰鸵鸟完成签到,获得积分10
11秒前
昵称发布了新的文献求助10
12秒前
可爱的函函应助Chenmengyi采纳,获得10
12秒前
WCM完成签到,获得积分10
12秒前
MaoSen发布了新的文献求助30
13秒前
pluto应助乔路采纳,获得10
13秒前
高分子物理不会完成签到,获得积分10
13秒前
Jenifer完成签到 ,获得积分10
13秒前
chen完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
履带车辆的设计与计算 666
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4486632
求助须知:如何正确求助?哪些是违规求助? 3941651
关于积分的说明 12222880
捐赠科研通 3598019
什么是DOI,文献DOI怎么找? 1978879
邀请新用户注册赠送积分活动 1015757
科研通“疑难数据库(出版商)”最低求助积分说明 908992