Role of zinc hydroxysulfates in the thermodynamics and kinetics of mild-acid Zn-MnO2 batteries

动力学 溶解 材料科学 电化学 氧化还原 降水 阴极 电极 无机化学 冶金 化学工程 物理化学 化学 物理 气象学 工程类 量子力学
作者
Kwang‐Ho Ha,Hyeonseok Moon,Eun Ji Joo,Duk Hyung Jo,Kyu Tae Lee
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:65: 103150-103150 被引量:9
标识
DOI:10.1016/j.ensm.2023.103150
摘要

Mild-acid Zn-MnO2 batteries have emerged as a promising alternative to replace Li-ion batteries in large-scale energy storage systems, primarily due to their high safety and low cost. While there have been significant improvements in the electrochemical performance of Zn-MnO2 batteries, the reaction mechanism of the MnO2 cathode is not fully comprehended. Despite the ongoing debate regarding the reaction mechanism of MnO2, it is noteworthy that the reversible formation and dissolution of zinc hydroxysulfates (ZHS) have been unequivocally observed during cycling. Nevertheless, the specific role of ZHS in the electrochemical reaction of MnO2 remains incompletely understood. Therefore, a comprehensive elucidation of the contribution of ZHS to the MnO2 reaction is still required. Herein, the role of ZHS in the electrochemical reaction of Mn2+ into MnO2 is investigated in terms of thermodynamics and kinetics. The voltage profiles associated with Mn2+ oxidation into MnO2 are compared under conditions of ZHS presence and absence. Operando pH analysis is also established to clarify the role of ZHS in the redox potential of the Mn2+/Mn4+ couple. In addition, a purposefully designed electrochemical experiment is performed to elucidate that ZHS significantly contributes to the oxidation kinetics of Mn2+ into MnO2 during charge. Various hydroxysulfate compounds are also examined to demonstrate a correlation between OH− derived from ZHS and the oxidation kinetics of Mn2+ during charge. These findings provide evidence that the electrochemical performance of Zn-MnO2 batteries is remarkably influenced by the dissolution kinetics of ZHS during charge and the precipitation sites of ZHS during discharge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
随遇而安发布了新的文献求助10
刚刚
wasttt完成签到,获得积分10
2秒前
浮游应助陈曦读研版采纳,获得10
2秒前
酷波er应助陈曦读研版采纳,获得10
2秒前
情怀应助俏皮代丝采纳,获得10
2秒前
圆又圆发布了新的文献求助10
3秒前
3秒前
狄绮发布了新的文献求助10
3秒前
Fe完成签到,获得积分10
4秒前
4秒前
黄黄黄哈完成签到,获得积分10
5秒前
科研通AI5应助孤标傲世采纳,获得10
5秒前
唐天宇发布了新的文献求助10
5秒前
寂寞的灵波完成签到 ,获得积分10
6秒前
wanci应助十三采纳,获得10
6秒前
orixero应助YangSihan采纳,获得10
6秒前
6秒前
小冰发布了新的文献求助10
7秒前
沙丁鲱鱼罐头关注了科研通微信公众号
7秒前
科研通AI6应助宝贝采纳,获得10
7秒前
随遇而安完成签到,获得积分10
7秒前
musei发布了新的文献求助10
7秒前
慧敏发布了新的文献求助10
8秒前
noobmaster完成签到,获得积分10
8秒前
8秒前
9秒前
李健应助ainan采纳,获得10
9秒前
文慧完成签到,获得积分10
10秒前
研友_LMo6rZ发布了新的文献求助10
10秒前
10秒前
浮游应助天空之城采纳,获得10
11秒前
潘浩琦发布了新的文献求助10
11秒前
BJ_whc完成签到,获得积分10
11秒前
12秒前
13秒前
尊敬的班完成签到,获得积分10
13秒前
研友_VZG7GZ应助学术垃圾采纳,获得10
13秒前
愉快的三问完成签到,获得积分10
13秒前
14秒前
迷你的延恶完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4747141
求助须知:如何正确求助?哪些是违规求助? 4094371
关于积分的说明 12667580
捐赠科研通 3806367
什么是DOI,文献DOI怎么找? 2101402
邀请新用户注册赠送积分活动 1126745
关于科研通互助平台的介绍 1003322