Coupling redox flow desalination with lithium recovery from spent lithium-ion batteries

锂(药物) 海水淡化 卤水 氧化还原 流动电池 电化学 储能 无机化学 化学 电池(电) 环境科学 废物管理 电极 电解质 工程类 内分泌学 物理化学 功率(物理) 有机化学 物理 医学 量子力学 生物化学
作者
Wei Shan,Yang Zi,Hedong Chen,Minzhang Li,Min Luo,Than Zaw Oo,Nyein Wint Lwin,Su Htike Aung,Danling Tang,Guang‐Guo Ying,Fuming Chen,Yuan Chen
出处
期刊:Water Research [Elsevier BV]
卷期号:252: 121205-121205 被引量:11
标识
DOI:10.1016/j.watres.2024.121205
摘要

Electrochemical redox flow desalination is an emerging method to obtain freshwater; however, the costly requirement for continuously supplying and regenerating redox species limits their practical applications. Recycling of spent lithium-ion batteries is a growing challenge for their sustainable utilization. Existing battery recycling methods often involve massive secondary pollution. Here, we demonstrate a redox flow system to couple redox flow desalination with lithium recovery from spent lithium-ion batteries. The spontaneous reaction between a battery cathode material (LiFePO4) and ferricyanide enables the continuous regeneration of the redox species required for desalination. Several critical operating parameters are optimized, including current density, the concentrations of redox species, salt concentrations of brine, and the amounts of added LiFePO4. With the addition of 0.5920 g of spent LiFePO4 in five consecutive batches, the system can operate over 24 hours, achieving 70.46% lithium recovery in the form of LiCl aqueous solution at the concentration of 6.716 g·L−1. Simultaneously, the brine (25 mL, 10000 ppm NaCl) was desalinated to freshwater. Detailed cost analysis shows that this redox flow system could generate a revenue of ¥ 13.66 per kg of processed spent lithium-ion batteries with low energy consumption (0.77 MJ kg−1) and few greenhouse gas emissions indicating excellent economic and environmental benefits over existing lithium-ion battery recycling technologies, such as pyrometallurgical and hydrometallurgical methods. This work opens a new approach to holistically addressing water and energy challenges to achieve sustainable development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
完美世界应助跳跃的煜祺采纳,获得10
刚刚
hrrypeet发布了新的文献求助10
1秒前
jie发布了新的文献求助10
1秒前
云端完成签到,获得积分10
1秒前
2秒前
Chao发布了新的文献求助20
3秒前
肥肥完成签到 ,获得积分10
3秒前
lindoudou完成签到,获得积分10
3秒前
4秒前
哈哈哈v完成签到,获得积分10
4秒前
果粒橙应助张张采纳,获得10
5秒前
彭于彦祖发布了新的文献求助10
5秒前
cindy发布了新的文献求助10
6秒前
6秒前
杨yyyy发布了新的文献求助10
6秒前
刁刁完成签到,获得积分20
6秒前
菜系完成签到,获得积分10
6秒前
7秒前
坚定毛衣完成签到,获得积分10
8秒前
colddie发布了新的文献求助10
8秒前
小蘑菇应助小八统治世界采纳,获得10
8秒前
半枝桃完成签到 ,获得积分10
8秒前
慕青应助勤劳的星月采纳,获得30
8秒前
10秒前
10秒前
Ashley完成签到,获得积分10
10秒前
大气糖豆完成签到,获得积分10
11秒前
哈哈哈发布了新的文献求助20
11秒前
11秒前
LingYun完成签到,获得积分10
11秒前
Orange应助cqssdyxn采纳,获得10
11秒前
大大大忽悠完成签到,获得积分10
11秒前
13秒前
Endeavor完成签到,获得积分10
13秒前
13秒前
木子完成签到,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
火火发布了新的文献求助10
14秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4238729
求助须知:如何正确求助?哪些是违规求助? 3772569
关于积分的说明 11847565
捐赠科研通 3428517
什么是DOI,文献DOI怎么找? 1881507
邀请新用户注册赠送积分活动 933750
科研通“疑难数据库(出版商)”最低求助积分说明 840575