亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

VirusBERTHP: Improved Virus Host Prediction Via Attention-based Pre-trained Model Using Viral Genomic Sequences

传染性 计算机科学 寄主(生物学) 人工智能 病毒 基因组 病毒分类 人工神经网络 计算生物学 生物 机器学习 基因 病毒学 遗传学
作者
Yunzhan Wang,Yang Jin,Yunpeng Cai
标识
DOI:10.1109/bibm58861.2023.10385501
摘要

Virus has become the most prominent cause of infectious diseases which greately threaten human health. Determining whether a viral genome can possess human host infectivity would be of great value to epidemic prevention. However, due to the highly diversified and unstructured nature of virus genomes, current bioinformatic and machine learning methods for prediction virus host infectivities are rather limited in performance. In this paper we propose an accurate virus human host infectivity prediction tool, VirusBERTHP, using an attention-based pretraining mechanism following the well-known BERT architecture, which is capable of predicting the human infectivity of a novel virus species whose genome is not in the training database. We develop a BERT-based representation learning scheme, VirusBERT, to efficiently extract the complex feature among versatile virus sequences, which show greate seperability in the feature space. We created a large curated database containing 2,948,656 unlabelled virus sequences to efficiently pre-train the VirusBERT model. Then, the VirusBERTHP model is trained with a relatively smaller set of labelled sequences corresponding to specific tasks, using a full-connected deep neural network. We adopted the model on four published virus-host classification datasets and showed that our model outperforms previous state-of-the-art methods in prediction performance. On three datasets with open-view setting where no restriction is imposed on the taxonomy of the input virus sequences, our model achieved more than 99% accuracy in predicting human host infectivity, justifying the efficiency of our method. In addition to accuracy boost, our model is adaptive to various virus sequence prediction task by seperating the pretraining and supervised learning phases. In addition, the model is adaptable to a wide range of sequence lengths from 250bps to 10k bps, expanding the application field of the model. Source code and data of our paper is available at https://github.com/wyzwyzwyz/virusBert/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
799发布了新的文献求助10
2秒前
8秒前
学霸宇大王完成签到 ,获得积分10
10秒前
ryen发布了新的文献求助10
11秒前
tao完成签到 ,获得积分10
13秒前
满天星完成签到 ,获得积分10
13秒前
ryen完成签到,获得积分10
16秒前
45秒前
Halo发布了新的文献求助10
49秒前
DUNK完成签到,获得积分10
50秒前
从从余余完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Otter完成签到,获得积分10
1分钟前
科研通AI2S应助温柔的婷采纳,获得10
1分钟前
FashionBoy应助温柔的婷采纳,获得10
1分钟前
1分钟前
帅币完成签到 ,获得积分10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
犹豫梦菡完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
Amy完成签到 ,获得积分10
2分钟前
追寻奄发布了新的文献求助10
2分钟前
华仔应助Yy采纳,获得10
2分钟前
刻苦的长颈鹿完成签到,获得积分10
2分钟前
烟花应助xyl采纳,获得10
2分钟前
2分钟前
可爱的函函应助猫猫采纳,获得10
2分钟前
Yy发布了新的文献求助10
2分钟前
ffffabab应助Yy采纳,获得10
2分钟前
2分钟前
莫晓岚完成签到 ,获得积分10
2分钟前
隐形曼青应助懒羊羊大王采纳,获得10
2分钟前
3分钟前
HTniconico完成签到 ,获得积分10
3分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4130203
求助须知:如何正确求助?哪些是违规求助? 3667148
关于积分的说明 11600686
捐赠科研通 3365475
什么是DOI,文献DOI怎么找? 1849067
邀请新用户注册赠送积分活动 912871
科研通“疑难数据库(出版商)”最低求助积分说明 828322