VirusBERTHP: Improved Virus Host Prediction Via Attention-based Pre-trained Model Using Viral Genomic Sequences

传染性 计算机科学 寄主(生物学) 人工智能 病毒 基因组 病毒分类 人工神经网络 计算生物学 生物 机器学习 基因 病毒学 遗传学
作者
Yunzhan Wang,Yang Jin,Yunpeng Cai
标识
DOI:10.1109/bibm58861.2023.10385501
摘要

Virus has become the most prominent cause of infectious diseases which greately threaten human health. Determining whether a viral genome can possess human host infectivity would be of great value to epidemic prevention. However, due to the highly diversified and unstructured nature of virus genomes, current bioinformatic and machine learning methods for prediction virus host infectivities are rather limited in performance. In this paper we propose an accurate virus human host infectivity prediction tool, VirusBERTHP, using an attention-based pretraining mechanism following the well-known BERT architecture, which is capable of predicting the human infectivity of a novel virus species whose genome is not in the training database. We develop a BERT-based representation learning scheme, VirusBERT, to efficiently extract the complex feature among versatile virus sequences, which show greate seperability in the feature space. We created a large curated database containing 2,948,656 unlabelled virus sequences to efficiently pre-train the VirusBERT model. Then, the VirusBERTHP model is trained with a relatively smaller set of labelled sequences corresponding to specific tasks, using a full-connected deep neural network. We adopted the model on four published virus-host classification datasets and showed that our model outperforms previous state-of-the-art methods in prediction performance. On three datasets with open-view setting where no restriction is imposed on the taxonomy of the input virus sequences, our model achieved more than 99% accuracy in predicting human host infectivity, justifying the efficiency of our method. In addition to accuracy boost, our model is adaptive to various virus sequence prediction task by seperating the pretraining and supervised learning phases. In addition, the model is adaptable to a wide range of sequence lengths from 250bps to 10k bps, expanding the application field of the model. Source code and data of our paper is available at https://github.com/wyzwyzwyz/virusBert/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz完成签到 ,获得积分10
刚刚
刚刚
1秒前
酷酷李可爱婕完成签到 ,获得积分10
1秒前
1秒前
2秒前
WJ1989发布了新的文献求助10
2秒前
美少叔叔完成签到 ,获得积分10
2秒前
LLxiaolong完成签到,获得积分10
2秒前
2秒前
3秒前
阿秧发布了新的文献求助10
3秒前
小杨完成签到,获得积分10
4秒前
4秒前
猪猪hero完成签到,获得积分10
4秒前
abcd_1067发布了新的文献求助10
4秒前
OO圈圈完成签到,获得积分10
4秒前
汕头凯奇发布了新的文献求助10
4秒前
余味应助xun采纳,获得10
5秒前
共享精神应助yehuiyu采纳,获得10
5秒前
兰彻完成签到,获得积分10
5秒前
上官若男应助秋子采纳,获得10
5秒前
科研通AI5应助粗犷的采枫采纳,获得10
5秒前
6秒前
7秒前
lucky完成签到,获得积分10
7秒前
zz完成签到,获得积分10
7秒前
8秒前
xiaoxiao完成签到,获得积分10
8秒前
蘑菇完成签到,获得积分10
8秒前
xiiin发布了新的文献求助10
8秒前
哈哈一笑完成签到,获得积分10
8秒前
朝歌完成签到,获得积分10
8秒前
火狐狸kc完成签到,获得积分10
8秒前
8秒前
玩笑完成签到 ,获得积分10
9秒前
9秒前
wcx发布了新的文献求助10
9秒前
酷波er应助莫妮卡卡采纳,获得10
9秒前
科研通AI5应助晏晏采纳,获得10
9秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785072
求助须知:如何正确求助?哪些是违规求助? 3330486
关于积分的说明 10246402
捐赠科研通 3045842
什么是DOI,文献DOI怎么找? 1671749
邀请新用户注册赠送积分活动 800814
科研通“疑难数据库(出版商)”最低求助积分说明 759665