连接器
结合
抗体
化学
有效载荷(计算)
抗体-药物偶联物
片段(逻辑)
药品
葡萄糖醛酸
单克隆抗体
分子生物学
组合化学
药理学
医学
生物
生物化学
免疫学
计算机科学
算法
数学分析
计算机网络
尿
数学
网络数据包
操作系统
作者
Ioanna Stamati,Gökhan Yahioglu,Soraya Diez-Posada,Anja Pomowski,Isabel Perez-Castro,A. Keith Stewart,Laura Bouché,Antony Constantinou,Benjamin J. Stenton,Savvas Saouros,Bryan Edwards,Sam Ness,Mahendra P. Deonarain
标识
DOI:10.1158/1535-7163.mct-24-1182
摘要
Abstract Antibody-Drug Conjugates (ADCs) are poised to embed themselves as pillars of cancer therapy after decades of development and fine-tuning. The vast majority of those in preclinical and clinical development are based on full-length immunoglobulins employing a variety of linker-payloads and conjugation strategies. Other, smaller formats are being considered to overcome some of the current limitations of ADCs, notably poor solid tumour penetration and prolonged systemic toxin exposure. By combining stable, high-lysine containing single-chain Fv antibody fragments, compact hydrophilic linkers and a validated MMAE (monomethyl auristatin-E) payload, high-DAR (Drug:Antibody Ratio) FDCs (Antibody-Fragment Drug Conjugates) were made which retained significant binding and developability properties. Against the established target HER2, an average DAR 6 FDC was reproducibly obtained (equivalent to a DAR 30 ADC by mass) with picomolar binding affinity, low aggregation and translatable pharmacokinetics. Despite the faster elimination kinetics, rapid and intense tumour payload delivery was seen leading to tumour cure efficacy in multiple HER2 tumour xenografts at doses as low as 0.6mg/kg given 4-times, weekly. Internalization and tumour uptake quantification data illustrate the benefits of the higher-penetrating format. Experience with over a dozen linker-payload structures has provided an insight into the critical design features that could make FDCs a viable alternative to ADCs in the most challenging solid tumour indications.
科研通智能强力驱动
Strongly Powered by AbleSci AI